This question paper contains 2 printed pages]

AA-24-2019

FACULTY OF SCIENCE

B.Sc. (CS) (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2019

(CBCS Pattern)

COMPUTER SCIENCE

(S1.3)

(Fundamental of Digital Logic)

(Wednesday, 16-10-2019)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- 1. Solve the following (any five):

15

- (a) Explain the T-flip-flop.
- (b) Explain the working of AND-gate.
- (c) Explain the working of Encoder.
- (d) Explain EX-OR, EX-NOR logic gate.
- (e) Explain Encoder.
- (f) Explain Half Adder in detail.
- (g) Explain 1'S complement and 2'S complement with example.
- 2. Solve any *two* of the following:

10

(a) Draw the combinational circuit for the following output:

$$y = AB + BC + \overline{AB}.$$

- (b) Describe NAND gate as universal building block.
- (c) Explain working of multiplexer.

P.T.O.

VV I		(2) AA $=24$ $=26$	119
3.	Solve	any two of the following:	10
	(a)	Explain full adder in detail.	200
	(<i>b</i>)	Solve the following:	A 6
		$(i) (11011)_2 \times (101) = ?$	179
		(ii) $(111010) - (01010) = ?$	STAN Y
	(c)	State and prove De Morgan's Second law.	
4.	Solve	any two of the following:	10
	(a)	Explain k-map in detail with example (two, three, four variable).	
	(<i>b</i>)	Explain don't care condition with simple example in detail.	
	(c)	Minimize the following function using k-map:	
		f (A, B, C, D) = Σm (0, 1, 2, 3, 8, 9, 12, 13, 14, 15).	
5.	Solve	any two of the following:	10
	(a)	Explain the working of clocked SR flip-flop.	
	(<i>b</i>)	Describe working of 4-bit left shift register	
	(c)	Explain clocked JK FF in detail.	
6.	Solve	any two of the following:	10
	(a)	Explain synchronous counters in detail.	
	(b)	Explain Shif Register in detail.	
	(c)	(i) $(3241)_8 = (?)_2$	
	20 04 74 V	(ii) $(435)_{10} = (?)_{16}$.	
	Solve	any two of the following:	10
	(a)	Explain concept of I/O Buses in detail.	
	(<i>b</i>)	Explain Analog to Digital Conversion	
	(c)	Explain the working of Up counter.	
2 / V (2 - 7 N V	DI 405 (A) 455 (A) 450 (A)	