This question paper contains 2 printed pages]

(c)

(*d*)

(e)

AA-37-2019

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (C.S.) (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2019 (New/CBCS Pattern)

COMPUTER SCIENCE

(Elective)

(BCS-104-B)

(Fundamentals of Digital Electronics)

Time: 10.00 a.m. to 1.00 p.m. (Friday, 18-10-2019) Time—Three Hours Maximum Marks—75 N.B. : (i)Attempt *All* questions. (ii)Assume suitable data, if necessary. 1. Attempt the following (any five): 15 Explain Octal and Hexadecimal number systems. (a)(*b*) Explain AND, OR gates. Explain Half adder. (c) (*d*) Explain S-R flip-flop. Explain Gray code with example. (e) Explain analog and digital signals. (f) Explain T type flip-flop. (g) Attempt any three of the following: 15 (a) Explain the complementation methods with example. (b) Do the following: $(3BC)_{16} = (?)_{8}$ (i)(ii) $(4221)_8 = (?)_{10}$

P.T.O.

State and prove DeMorgan's first theorem.

Explain asynchronous counter.

Explain PISO shift register.

WT		(2) AA $-37-201$
3.	Attem	apt any three of the following:
	(a)	What is multiplexer? Explain 8:1 multiplexer.
	(<i>b</i>)	Explain JK flip-flop.
	(c)	Explain Hamming code.
	(d)	What is K-map? Explain 2 variable and 3 variable K-map with example
	(e)	Explain decoder.
4.	Atten	apt any three of the following:
	(a)	Do the following:
		(i) $(111110001)_2 = (?)_{16}$
		(ii) $(239)_{10} = (?)_2$
	(<i>b</i>)	Reduce the following using K-map:
		$Y = \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}BCD + \overline{A}BC\overline{D} + ABCD + ABC\overline{D}$
		$+ A\overline{B}CD + A\overline{B}C\overline{D}$
	(c)	Explain analog to digital converter.
	(d)	Explain synchronous counter.
	(e)	Explain construction of Basic-gates using NAND-gate.
	Write	short notes on (any three):
	(a)	Excess-3 code
	(b)	EX-OR, EX-NOR gate
	(c)	Digital to Analog Converter
	(d)	Full Adder
	(e)	SISO Shift Register.