This question paper contains 4+1 printed pages]

BF-66-2016

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(CBCS Pattern)

MATHEMATICS

Paper I

(Differential Calculus)

(MCQ + Theory)

(Wednesday, 19-10-2016)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) Attempt All questions.
 - (ii) One mark to each correctly answered MCQ.
 - (iii) Negative marking system is applicable.
 - (iv) Use black ball point pen to darken the circle of correct choice in OMR answer-sheet. Circle once darkened is final. No change is permitted.
 - (v) Darken only one circle for the answer of an MCQ.

MCQ

- 1. Choose the correct alternative for each of the following: 1 each
 - (1) The derivative of sech $x, x \in R$ is :
 - (a) $\tanh x$. sech x
- (b) $-\tanh x$. sech x
- (c) $\coth x$. $\operatorname{sech} x$
- (d) -coth x. sech x

P.T.O.

(2)
$$\frac{d^n}{dx^n}[(ax+b)^{-1}] = \dots$$

(a)
$$\frac{\left(-1\right)^{n} \cdot n! \ a^{n}}{\left(ax+b\right)^{n+1}}$$

(b)
$$\frac{(-1)^n \cdot (n+1)! \ a^n}{(ax+b)^{n+1}}$$

(c)
$$\frac{\left(-1\right)^{n} \cdot n! \ a^{n}}{\left(ax+b\right)^{n}}$$

(d)
$$\frac{(-1)^n \cdot n! a^{n+1}}{(ax+b)^{n+1}}$$

(3) The equation of the tangent at a point (x, y) on the curve y = f(x) is:

(a)
$$X - x = f'(x) (Y - y)$$

(b)
$$X - x = -f'(x) (Y - y)$$

(c)
$$Y - y = f'(x) (X - x)$$

$$(d) \qquad Y - y = -f'(x) \ (X - x)$$

(4) The length of the subnormal at any point of the curve y = f(x) is :

(a)
$$y.\frac{dy}{dx}$$

$$(b) y. \frac{dx}{dy}$$

$$(c) y.\sqrt{1+\left(\frac{dy}{dx}\right)^2}$$

$$(d) \qquad y.\sqrt{1+\left(\frac{dx}{dy}\right)^2}$$

- (5) If a function f is:
 - (i) continuous in [a, b]
 - (ii) derivable in]a, b[
 - $(iii) \quad f(a) = f(b)$

then there exists at least one value $c \in]a, b[$ such that :

$$(a) f'(c) < 0$$

$$(b) f'(c) \neq 0$$

$$(c) \qquad f'(c) = 0$$

$$(d) f'(c) > 0$$

(6) Cauchy form of remainder after n terms in Taylor's theorem is:

$$(a) \qquad \frac{h^n \cdot (1-\theta)^{n-p}}{p(n-1)!} f^n(a + \theta h)$$

(b)
$$\frac{h^{n-1} (1-\theta)^{n-1}}{(n-1)!} f^{n}(a + \theta h)$$

(c)
$$\frac{h^n}{n!} f^n(a + \theta h)$$

$$(d) \qquad \frac{h^n}{(n-1)!} \ f^n(a + \theta h)$$

- (7) $\lim_{x \to 0} x \cdot \log x = \dots$
 - (a) 0

(*b*) 1

(c) -1

- (d) ∞
- (8) $\lim_{k\to 0} \frac{f(a,b+k)-f(a,b)}{k}$, if it exists, is called the partial derivative of f(x, y) w.r.t. y at (a, b) and is denoted by :
 - (a) $f_{xy}(a, b)$

(b) $f_{yx}(a, b)$

(c) $f_x(a, b)$

- (d) $f_{y}(a, b)$
- (9) If $z = e^{ax}$. sin by, then $\frac{\partial z}{\partial x} = \dots$.
 - (a) ae^{ax} . cos by

(b) ae^{ax} . $\sin by$

(c) $be^{ax} \cos by$

- (d) $be^{ax} \sin by$
- $(10) \qquad \frac{\partial}{\partial y} \left(e^{xyz} \right) = \dots$
 - (a) $xyz \cdot e^{xyz}$

(b) $xy e^{xyz}$

(c) $xz e^{xyz}$

(d) $yz e^{xyz}$

Theory

2. Attempt any two of the following:

5 each

(a) Prove that:

$$\frac{d^n}{dx^n} [e^{ax} \cdot \cos(bx + c) = r^n \cdot e^{ax} \cdot \cos(bx + c + n\phi)]$$

where
$$r = \sqrt{a^2 + b^2}$$
, $\phi = \tan^{-1} \left(\frac{b}{a}\right)$.

(b) If u and v are two functions of x possessing derivatives of the nth order, then prove that :

$$(uv)_n \ = \ u_nv \ + \ nc_1u_{n-1} \ v_1 \ + \ nc_2u_{n-2} \ + \ \ +$$

$$nc_ru_{n-r}\ v_r\ +\ ...\ +\ nc_nu.v_n.$$

(c) Show that the length of the portion of the tangent to the curve

$$x = a \cos^3 \theta$$

$$y = a \sin^3 \theta$$

intercepted between the coordinate axes is constant.

3. Attempt any two of the following:

5 each

(a) If a function f is (i) continuous in a closed interval [a, b] and (ii) derivable in the open interval [a, b], then prove that there exists at least one value $c \in [a, b]$ such that :

$$\frac{f(b)-f(a)}{b-a}=f'(c).$$

(b) If in the Cauchy mean value theorem, $f(x) = e^x$ and $F(x) = e^{-x}$, then show that c is arithmetic mean between a and b.

(c) Determine:

$$\lim \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right).$$

4. Attempt any two of the following:

5 each

(a) If

$$z = f(x, y)$$

be a homogeneous function of x, y of degree n, then prove that :

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial v} = nz.$$

(*b*) If

$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}, \ x^2 + y^2 + z^2 \neq 0$$

then show that:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

(c) If

$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right), \ x \neq y,$$

then show that:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u.$$