This question paper contains 4 printed pages]

BF-82-2016

FACULTY OF SCIENCE

B.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(Old Course)

MATHEMATICS

Paper II

(Algebra and Trigonometry)

(MCQ+Theory)

(Friday, 21-10-2016)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

- (ii) First **30** minutes for Question No. **1** and remaining time for other questions.
- (iii) Negative marking system is applicable for Q. No. 1.
- (iv) Use black ball point pen to darken the circles on OMR for correct choice answer. Circle once darkened, is final.
- (v) Figures to the right indicate full marks.

(MCQ)

- 1. Choose the most *correct* alternative for each of the following: 1 each
 - (i) If A is n-square matrix, then matrix \mathring{A} is :
 - (a) null matrix of order $n \times n$
 - (b) zero
 - (c) identity matrix of order $n \times n$
 - (d) n-square upper triangular matrix
 - (ii) If A = $[a_{ij}]_{n\times n}$ matrix such that $a_{ij}=0$ for $i\neq j$, then matrix A is :
 - (a) a lower triangular matrix
 - (b) an upper triangular matrix
 - (c) a matrix whose non-diagonal elements are non-zero
 - (d) a diagonal matrix

		(–	,	
(iii)	If A^θ denotes the transposed conjugate of matrix A, then A^θ is expressed as :			
	(a)	$(A^{-1})^{-1}$	(<i>b</i>)	$(\overline{\mathrm{A}'})$
	(c)	$(\overline{\mathrm{A}})'$	(d)	Both (b) and (c)
(iv)	If A is a square matrix such that $A' = A^{-1}$, then matrix A is:			
	(a)	symmetric matrix	(<i>b</i>)	skew-symmetric matrix
	(c)	orthogonal matrix	(d)	none of these
(v)	No. of elementary operations or transformations on matrix are :			
	(a)	6	(<i>b</i>)	5
	(c)	4	(d)	3
(vi)	The system $AX = B$ of m linear equations in n unknowns has no solution, if :			
	(a)	$\rho(\mathbf{A}) = \rho([\mathbf{A} : \mathbf{B}]) = n$	(<i>b</i>)	$\rho(A) \neq \rho([A:B])$
	(c)	$\rho(A) = \rho([A : B]) = r < n$	(d)	All of these
(vii)	Rank of identity matrix of order n is:			
	(a)	less than n	(<i>b</i>)	equal to n
	(c)	1	(d)	0
(viii)	If $z = x + iy$ is a complex number, then modulus of z is :			
	(a)	$\sqrt{x+y}$	(b)	$\sqrt{x^2 + y^2}$
	(c)	(x + y)	(d)	(x^2+y^2)
(ix)	The complex quantity $(\cos \theta + i \sin \theta)^{-1}$ is equal to:			
	(a)	$\cos \theta - i \sin \theta$	(b)	$\frac{1}{\cos \theta + i \sin \theta}$

All of these

(d)

 $\cos (-\theta) + i \sin (-\theta)$

(c)

(x) For all values of x real or complex, Euler's exponential value of $\cos x$ is :

$$(a) \qquad \frac{2}{e^x + e^{-x}}$$

$$(b) \qquad \frac{e^x - e^{-x}}{2i}$$

$$(c) \qquad \frac{e^{x_i} - e^{-x_i}}{2}$$

$$(d) \qquad \frac{e^{x_i} + e^{-x_i}}{2}$$

(Theory)

2. Attempt any two of the following:

5 each

(a) If A, B, C are three matrices of type $m \times n$, $m \times n$, $n \times p$ respectively, then prove that :

$$(A + B)C = AC + BC$$
.

(b) By using principle of Mathematical induction prove that if:

$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}, \text{ then } A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$$

n being positive integer.

- (c) Prove that inverse of a square matrix, if it exists is unique.
- 3. Attempt any *two* of the following:

5 each

- (a) Prove that the elementary operations do not alter the rank of the matrix.
- (b) Find the row rank of the matrix:

$$\begin{bmatrix} 0 & -1 & 2 \\ 4 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix}.$$

(c) Prove that a system AX = B of n non-homogeneous equations in n unknowns has a unique solution provided A is non-singular i.e. $\rho(A) = n$.

4. Attempt any two of the following:

5 each

- (a) State and prove De-Moivre's theorem for positive and negative integers.
- (b) Expand $\sin \alpha$ in terms of α , i.e. in ascending powers of α .
- (c) Expand $\cos^8 \theta$ in a series of cosines of multiples of θ .