This question paper contains 5 printed pages]

R-68-2017

FACULTIES OF ARTS AND SCIENCE

B.A./B.Sc. (First Year) (First Semester) EXAMINATION MARCH/APRIL, 2017

(CBCS/CGPA)

MATHEMATICS

Paper I

(Differential Calculus)

(MCQ+Theory)

(Saturday, 1-4-2017)

Time: 10.00 a.m. to 12.00 noon

 $Time-2\ Hours$

Maximum Marks—40

N.B. :— (i) Attempt All questions.

- (ii) One mark to each correctly answered MCQ.
- (iii) Negative marking system is applicable.
- (iv) Use black ball point pen to darken the circle of correct choice in OMR answer-sheet. Circle once darkened is final. No change is permitted.
- (v) Darken only one circle for the answer of an MCQ.

(MCQs)

1. Choose the *correct* alternative for each of the following:

(i) The derivative of coth $x, x \in R$ is :

(a) $\operatorname{cosech}^2 x$

(b) $-\operatorname{cosech}^2 x$

(c) $\operatorname{sech}^2 x$

(d) -sech² x

 $(ii) \qquad \frac{d^n(a^{mx})}{dx^n} =$

(a) $m^n d^{mx} (\log a)^n$

(b) $m^n a^{mx} (\log a)$

(c) $m a^{mx} (\log a)^n$

 $(d) \qquad m^n a^x (\log a)^n$

P.T.O.

10

- (iii) The equation of the normal at a point 't' of the curve x = f(t), y = f(t) is:
 - (a) [X f(t)]f'(t) [y F(t)]F'(t) = 0
 - (b) [X f(t)]F'(t) [y F(t)]f'(t) = 0
 - (c) [X f(t)]F'(t) + [y F(t)]f'(t) = 0
 - (d) [X f(t)]f'(t) + [y F(t)]F'(t) = 0
- (iv) The length of the sub-tangent at any point of the curve y = f(x) is:
 - (a) $y\sqrt{\left[1+\left(\frac{\partial y}{\partial x}\right)^2\right]}$ (b) $y\sqrt{\left[1+\left(\frac{\partial x}{\partial y}\right)^2\right]}$
 - (c) $y \frac{dx}{dy}$ (d) $y \frac{dy}{dx}$
- (v) If a function f is:
 - (i) Continuous in a closed interval [a, b]
 - (ii) Derivable in the open interval a, b[
 - (iii) f(a) = f(b), then there exists at least one value 'c' $\in]a, b[$ such that :
 - (a) f'(c) < 0 (b) f'(c) > 0
 - (c) $f'(c) \neq 0$ (d) f'(c) = 0
- (vi) Cauchy form of remainder after n terms in Taylor's theorem is:
 - (a) $\frac{h^n(1-\theta)^{n-p}}{p(n-1)!}f^n(a+\theta h)$
 - (b) $\frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^n(a+\theta h)$
 - (c) $\frac{h^n}{n!}f^n(a+\theta h)$
 - $(d) \quad \frac{h^n}{(n-1)!} f^n(a+\theta h)$

- (vii) Consider:
 - $(i) \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$
 - $(ii) \qquad \lim_{x \to 0} \frac{\tan x}{x} = 1,$

then:

- (a) both (i), (ii) are true
- (b) (i) is false (ii) is true
- (c) (i) is true (ii) is false
- (d) both (i), (ii) are false
- (*viii*) $\lim_{k\to 0} \frac{f(a, b+k) f(a, b)}{k}$, if it exists is called the partial derivative of f(x, y) w.r.t. y at (a, b) and is denoted by :
 - (a) $f_{yx}(a, b)$

 $(b) f_{xy}(a,b)$

(c) $f_{v}(a, b)$

- (d) $f_{x}(a,b)$
- (ix) If $z = \log(x^2 + y^2)$, then $\frac{\partial z}{\partial x} =$
 - $(a) \quad \frac{x}{(x^2+y^2)}$

- (b) $\frac{x}{(x^2+y^2)^2}$
- (c) $\frac{2x}{(x^2+y^2)^2}$
- $(d) \qquad \frac{2x}{x^2 + y^2}$
- (x) If $\sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right) = z$, then $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =$
 - (a) $2 \tan z$

(b) $\frac{1}{2} \tan z$

(c) 2 sin z

 $(d) \qquad \frac{1}{2}\sin z$

P.T.O.

(Theory)

2. Attempt any two of the following:

5 each

(a) Prove that:

$$\frac{d^n[e^{ax}\sin(bx+c)]}{dx^n} = r^n e^{ax}\sin(bx+c+n\phi)$$

where
$$r = \sqrt{(a^2 + b^2)}$$
, $\phi = \tan^{-1} \left(\frac{b}{a}\right)$.

(b) If u and v are two functions of x possessing derivative of the nth order, then prove that :

$$(uv)_{n} = u_{n}v + {}^{n}C_{1}u_{n-1}v_{1} + {}^{n}C_{2}u_{n-2}v_{2} + \dots + {}^{n}C_{r}u_{n-r}v_{r} + \dots + {}^{n}C_{n}uv_{n}.$$

- (c) Find the equations of the tangent and normal at $\theta = \frac{\pi}{2}$ to the curve $x = a(\theta + \sin \theta), y = a(1 + \cos \theta).$
- 3. Attempt any *two* of the following:

5 each

(a) If a function f is (i) continuous in a closed interval [a, b] and (ii) derivable in the open interval [a, b], then prove that there exists at least one value $c \in [a, b]$ such that :

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

- (b) If in the Cauchy's mean value theorem, $f(x) = e^x$ and $F(x) = e^{-x}$, show that c is arithmetic mean between a and b.
- (c) Evaluate:

$$\lim_{x\to 0} (\cos x)^{\cot x}.$$

4. Attempt any two of the following:

5 each

(a) If z = f(x, y) is homogeneous function of x, y of degree n, then prove that :

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1) z.$$

(b) If $u = 3(lx + my + nz)^2 - (x^2 + y^2 + z^2)$ and $l^2 + m^2 + n^2 = 1$, show that:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

(c) If

$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}, x \neq y,$$

show that:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u.$$