This question paper contains 4 printed pages]

W-88-2018

FACULTY OF ARTS AND SCIENCE

B.A./B.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS/CGPA)

MATHEMATICS

Paper II

(Algebra and Trigonometry)

(MCQ+Theory)

(Saturday, 20-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. :— (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Negative marking system for MCQs is applicable.
 - (iv) Use black ball pen to darken the correct choice circle in OMR-sheet.

(MCQ)

- 1. Choose the most *correct* alternative for each of the following: 1 each
 - (i) If A is a matrix of order $m \times n$ and B and C are matrices of same order $n \times p$, then the order of matrix A (B + C) is:
 - (A) $m \times n$

(B) $n \times p$

(C) $m \times p$

- (D) None of these
- (ii) A square matrix A is such that $A^m = 0$, where m is least the integer, then matrix A is called as:
 - (A) Idempotent matrix
- (B) Nilpotent matrix
- (C) Involutary matrix
- (D) None of these
- (iii) If $A = [a_{ij}]$ is any square matrix, then det A_{ij} is called :
 - (A) Minor of (i, j)th entry a_{ij} of matrix A
 - (B) Co-factor of a_{ii} of matrix A
 - (C) Involutory element of A
 - (D) None of the above

P.T.O.

(iv)Let A be a *n*-square matrix. If there exists a *n*-square matrix B such that:

$$AB = BA = I_n$$

then:

 $A^{-1} = B$ (A)

- $B^{-1} = A$ (B)
- Both (*a*) and (*b*)
- None of these (D)
- If A is any $m \times n$ matrix, then rank of matrix A is denoted by $\rho(A)$ (v)and is:
 - (A) $\geq \min(m, n)$
- (B) $= \min(m, n)$
- (C) $\leq \min(m, n)$
- All of these (D)
- Total no. of elementary operations or transformations is : (VI)
 - (A) 3

(B)

 (\mathbf{C}) 5

- (D)
- (vii) If A be a matrix of order 5×6 , which is in row-echelon form, containing two zero rows, then row rank of matrix A is:
 - (A) 6

5 (B)

 (\mathbf{C})

- (D)
- The value of complex number $(\cos \theta + i \sin \theta)^{\frac{3}{4}}$ is: (viii)

 - (A) $\left(\cos\frac{\theta}{4} + i\sin\frac{\theta}{4}\right)^3$ (B) $\left(\cos\frac{3}{4}\theta + i\sin\frac{3}{4}\theta\right)$
 - (C) $(\cos 3\theta + i \sin 3\theta)^{\frac{1}{4}}$
- (D) All of these

- (ix) The value of $\sin \alpha$ in ascending powers of α is:
 - (A) $\sin \alpha = 1 + \alpha + \frac{\alpha^2}{2!} + \frac{\alpha^3}{3!} + \dots$
 - (B) $\sin \alpha = 1 \frac{\alpha^2}{2!} + \frac{\alpha^4}{4!} \frac{\alpha^6}{6!} + \dots$
 - (C) $\sin \alpha = \alpha \frac{\alpha^3}{3!} + \frac{\alpha^5}{5!} \frac{\alpha^7}{7!} + \dots$
 - (D) None of the above
- (x) The quantity $e^{-\theta i}$, where θ is real and $i = \sqrt{-1}$ can be represented by :
 - (A) $\cos \theta + i \sin \theta$
- (B) $\sin \theta i \cos \theta$
- (C) $\cos \theta i \sin \theta$
- (D) $\sin \theta + i \cos \theta$

(Theory)

2. Attempt any two of the following:

5 each

(i) If A, B, C are matrices of order $m \times n$, $n \times p$, $p \times q$ respectively, then prove that:

$$(AB)C = A(BC)$$

(ii) Calculate the adjoint of matrix A, where:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \\ -2 & 1 & 1 \end{bmatrix}.$$

(iii) If A and B are square matrices of order n, then prove that AB is invertible if and only if A and B are invertible and then prove that $(AB)^{-1} = B^{-1}.A^{-1}$.

P.T.O.

3. Attempt any two of the following:

5 each

- (i) Prove that the elementary operations do not alter the rank of a matrix.
- (ii) Reduce to row echelon form the matrix:

$$A = \begin{bmatrix} 1 & -2 & -1 & 4 \\ 2 & -4 & 3 & 5 \\ -1 & 2 & 6 & -7 \end{bmatrix}$$

Also find row rank of A.

- (iii) If X_1 is a solution of AX = B and X_2 is any solution of associated system AX = O, then prove that $X_1 + X_2$ is also a solution of AX = B. Further if Y is a solution of AX = B, then $Y X_1$ is a solution of AX = O.
- 4. Attempt any two of the following:

5 each

- (i) State and prove De-Moivre's theorem.
- (ii) Express sin θ in a series of cosines of multiples of θ where n is even.
- (iii) Separate into its real and imaginary parts the expression:

$$\sin(\alpha + \beta i)$$
.