This question paper contains 4 printed pages]

Y-102-2019

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (First Year) (First Semester) (Backlog) EXAMINATION NOVEMBER/DECEMBER, 2019

(CBCS Pattern)

MATHEMATICS

Paper II

(Algebra and Trigonometry)

(MCQ + Theory)

(Thursday, 19-12-2019)

Time: 10.00 a.m. to 12.00 noon

Time— Two Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

- (ii) Negative marking system for MCQ is applicable.
- (iii) Use black ball point pen to darken the circle of correct answer in OMR answer sheet. Circle once darken is final.
- (iv) Figures to the right indicate full marks.

(MCQ)

- 1. Choose the most *correct* alternative for each of the following: 1 each
 - (i) If $A^2 = I$, then a square matrix A is said to be:
 - (a) Nilpotent Matrix
- (b) Involutory Matrix
- (c) Idempotent Matrix
- (d) None of these
- (ii) Which of the following is non-singular matrix?
 - $(a) \qquad \begin{bmatrix} 4 & 2 \\ 6 & 3 \end{bmatrix}$

 $(b) \quad \begin{bmatrix} 1 & 7 \\ 9 & 2 \end{bmatrix}$

 $(c) \qquad \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}$

 $(d) \quad \begin{bmatrix} -1 & 2 \\ -2 & 4 \end{bmatrix}$

P.T.O.

- (iii) If A is an orthogonal matirx, then:
 - $(a) \qquad |A| = 1$

 $(b) \quad |\mathbf{A}| = 0$

(c) |A| = -1

(d) Both (a) and (c)

(iv) If:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$

then:

 $(a) \qquad \rho(A) = 2$

(b) $\rho(A) = 0$

 $(c) \qquad \rho(A) = 1$

 $(d) \quad \rho(A) = 3$

(v) The system:

$$x + y = 3$$

$$2x + 2y = 6$$

has:

- (a) Unique solution
- (b) No soulution
- (c) Infinitely many solutions (d) Only two solutions
- (vi) A system AX = B of n non-homogeneous equations in n unknowns has a unique solution if :
 - (a) $\rho(A) = n$

 $(b) \quad |(A)| = 0$

(c) $\rho(A) \neq n$

- (d) Both (a) and (b)
- (vii) The number of non-zero rows in the column-echelon form of matrix A, is called:
 - (a) row rank of A
- (b) orthogonal matrix
- (c) column rank of A
- (d) row echelon matrix
- (viii) If Z = 1 + i, then modulus of Z is :
 - (a) 2

(b) $\sqrt{2}$

(c) -2

(d) $-\sqrt{2}$

- (ix) If $x = \cos \theta + i \sin \theta$, then $x^n + \frac{1}{x^n}$ is equal to :
 - (a) $2 \cos \theta$

(b) $2i \sin n\theta$

(c) $2i \cos n\theta$

- (d) $2 \cos n\theta$
- (x) The series expansion of $\sin x$ is:

(a)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

(b)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$

(c)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

(d)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

(Theory)

2. Attempt any two of the following:

5 each

(a) If A, B, C are matrices of the order $m \times n$, $n \times p$, $p \times q$ respectively, then prove that:

$$(AB) C = A (BC)$$

(b) Calculate the adjoint of A, where:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 2 \\ -2 & 1 & 1 \end{bmatrix}$$

(c) Find the inverse of the matrix A, given by:

$$\mathbf{A} = \begin{bmatrix} 9 & 5 & 6 \\ 7 & -1 & 8 \\ 3 & 4 & 2 \end{bmatrix}$$

P.T.O.

3. Attempt any two of the following:

5 each

- (a) Prove that if λ is a characteristic root of a matrix A if and only if there exists a non-zero vector X such that $AX = \lambda X$.
- (b) Solve the system of equations:

$$x + 2y + 3z + 4t = 0$$

$$8x + 5y + z + 4t = 0$$

$$5x + 6y + 8z + t = 0$$

8x + 3y + 7z + 2t = 0

(c) Discuss the consistency of system of equations:

$$5x_1 + 3x_2 + 14x_3 = 4$$

$$x_2 + 2x_3 = 1$$

$$x_1 - x_2 + 2x_3 = 0$$

$$2x_1 + x_2 + 6x_3 + 2$$

4. Attempt any two of the following:

5 each

- (a) Expand $\cos^n \theta$ in a series of cosines of multiples of θ , n being a positive integer.
- (b) If $\sin \alpha + \sin \beta + \sin \gamma = \cos \alpha + \cos \beta + \cos \gamma = 0$, then prove that:

$$\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$$
 and $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$

(c) Separate into its real and imaginary parts the expression $\tan (\alpha + \beta i)$