This question paper contains 4 printed pages]

BF-93-2016

FACULTY OF SCIENCE

B.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(CBCS Pattern)

PHYSICS

Paper I (Phy-111)

(Mechanics and Properties of Matter)

(MCQ + Theory)

(Monday, 24-10-2016)

Time: 10.00 a.m. to 12.00 noon

 $Time-2\ Hours$

 $Maximum\ Marks$ —10+30=40

N.B. := (i) Attempt All questions.

- (ii) Question No. 1 is MCQ type. Answer MCQ questions on OMR sheet only.
- (iii) Question No. 2, Question No. 3 and Question No. 4 are descriptive type.
- (iv) Use OMR sheet for MCQ type questions and separate answer sheet for descriptive type questions.
- (v) Negative marking system is applicable to MCQ questions.

MCQ

1. Attempt all Multiple Choice Questions:

- 10
- (1) The value of Universal gravitational constant 'G' is in CGS unit:
 - (a) $6.669 \times 10^{-8} \text{ dynes cm}^2/\text{gm}^2$
 - (b) $6.129 \times 10^{-8} \text{ dynes cm}^2/\text{gm}^2$
 - (c) $6.669 \times 10^{-10} \text{ dynes cm}^2/\text{gm}^2$
 - (d) $6.129 \times 10^{-10} \text{ dynes cm}^2/\text{gm}^2$
- (2) Momentum is the product of
 - (a) Mass and volume
- (b) Pressure and velocity
- (c) Mass and pressure
- (d) Mass and velocity

P.T.O.

- (3) The Kepler's third law of planetary motion is:
 - (a) $T^2 \propto \frac{1}{a^3}$

(b) $T^2 \propto a^3$

(c) $T^2 \propto a^2$

- (d) $T^2 \propto a$
- (4) The excess pressure inside a soap bubble is:
 - (a) $\frac{T}{r}$

(b) $\frac{T}{2r}$

(c) $\frac{4T}{r}$

- (d) $\frac{2T}{r}$
- (5) The dimensional formula for surface tension is :
 - (a) $[M^1 L^0 T^{-2}]$

(b) [M L T]

(c) $[M^0 L^1 T^2]$

- (d) [M L⁻¹ T]
- (6) The Poiseuille's equation for coefficient of viscosity is:
 - $(a) \qquad \eta = \frac{\pi r P^4}{8lV}$

 $\eta = \frac{\pi P r^4}{8IV}$

(c) $\eta = \frac{\pi P r^3}{4lV}$

- $(d) \qquad \eta = \frac{\pi P r^2}{8/V}$
- (7) The critical velocity of a liquid is Inversely proportional to
 - (a) Volume of the liquid
- (b) Coefficient of viscosity
- (c) Mass of the tube
- (d) Density of the liquid
- (8) The ratio of longitudinal stress to linear strain within elastic limit is called:
 - (a) Bulk modulus
- (b) Modulus of rigidity
- (c) Young's modulus
- (d) None of these

- (9)The expression for time period of a Torsional pendulum is:
 - (a) $T = 2\pi \sqrt{\frac{I}{C}}$

 $(b) T = \frac{1}{2\pi} \sqrt{\frac{I}{C}}$

(c) $T = \pi \sqrt{\frac{I}{C}}$

- $(d) \qquad T = \pi^2 \sqrt{\frac{1}{C}}$
- (10)The expression for depression of a beam supported at its ends and loaded in the middle:
 - (a)

(c)

 $(b) \qquad \frac{wl^3}{48yI}$ $(d) \qquad \frac{wl^2}{46yI}$

Theory

2. Attempt any *five* of the following questions : 10

- (i)State Newton's first law of motion.
- (ii)Define torque. Give its S.I. unit and dimensions.
- (iii) Explain gravitational potential energy.
- (iv)Define modulus of rigidity. State S.I. unit and dimensions of it.
- (v)What are cohesive and adhesive forces? Give their examples.
- Explain the terms: (vi)
 - (a)critical velocity
 - (b) viscosity.
- State *three* types of elastic stresses and strains. (vii)

P.T.O.

WT (4) $BF-93-2016$

- 3. Attempt any *two* of the following questions:
 - (i) State and explain Kepler's laws of planetary motion.
 - (ii) Obtain an expression for excess pressure inside a liquid drop.
 - (iii) Derive poiseuille's equation for the flow of liquid through a tube.
 - (iv) Obtain relation connecting three elastic constants.
- 4. Attempt any *one* of the following questions:
 - (i) Explain Kepler's deduction from Newton's laws of gravitation.
 - (ii) Explain Jaeger's method for determination of surface tension of liquid.