This question paper contains 4 printed pages]

BF—94—2016

FACULTY OF SCIENCE

B.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(Old Course)

PHYSICS

Paper I (Phy-111)

(Mechanics and Properties of Matter)

(MCQ + Theory)

(Monday, 24-10-2016)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

 $Maximum\ Marks$ —10+30=40

- N.B. :-(i)Attempt *All* questions.
 - Question No. 1 is MCQ type. Answer MCQs on OMR sheet (ii)only.
 - Question No. 2, Question No. 3 and Question No. 4 are descriptive type. (iii)
 - Use OMR sheet for MCQ type questions and separate answer sheet (iv)for descriptive type questions.
 - Negative marking system is applicable to MCQ questions. (v)

MCQ

- 1. Attempt all Multiple Choice Questions: (1)Kepler's second law of planetary motion is also called as
 - Law of elliptical orbit (a)
- Law of Areas (b)
- (c) Law of Harmonic
- (d)Law of Gravitation

P.T.O.

10

- - (a) $V = -\frac{GM}{r^2}$

 $(b) V = \frac{GM}{r^2}$

(c) $V = -\frac{GM}{r}$

- (d) $V = \frac{GM}{r}$
- - (a) Newton/meter²
- (b) Newton/meter
- (c) Newton²/meter
- (d) dyne/cm
- (4) The excess pressure inside the liquid soap bubble is:
 - (a) $\frac{2T}{r}$

 $(b) \qquad \frac{4T}{r}$

(c) $\frac{1}{r}$

- (d) $\frac{3T}{r}$
- - (a) Elasticity

(b) Surface tension

(c) Viscosity

- (d) Diffusion
- (6) Searle's viscometer is used for
 - (a) Determination of elasticity of wire
 - (b) Determination of surface tension of liquid
 - (c) Determination of coefficient of viscosity of liquid
 - (d) None of the above
- (7) The viscosity of the gas increases with:
 - (a) increase in temperature
 - (b) decrease in temperature
 - (c) remains unchanged
 - (d) None of the above

- (8) When a beam is clamped horizontally at one end and loaded at other, then
 - (a) Filament of upper surface are shortened and lower surface are lengthened
 - (b) Filament of upper surface are lengthened and lower surface are shortened
 - (c) Filaments of upper and lower surface are not changed
 - (d) None of the above
- - (a) Inversely proportional to Young's Modulus of the material of beam
 - (b) Inversely proportional to square of Young's Modulus of material of beam
 - (c) Directly proportional to square of Young's Modulus of material of beam
 - (d) Directly proportional to Young's Modulus of material of a beam
- (10) The expression for potential at 'P' inside the solid sphere is

(a)
$$V = -GM \left(\frac{3a^2 - R^2}{2a^2} \right)$$
 (b) $V = GM \left(\frac{3a^2 - R^2}{2a^3} \right)$

(c)
$$V = GM \left(\frac{3a^2 - R^2}{3a^2} \right)$$
 (d) $V = GM \left(\frac{3a^2 - R^2}{3a^3} \right)$

Theory

2. Attempt any five of the following questions:

10

(i) State Kepler's law of equal areas.

P.T.O.

WT (4)	11 12 12 20 20 20 20 20 20 20 20 20 20 20 20 20	BF-94-2016
----------	---	------------

- (ii) State Newton's law of Gravitation.
- (iii) Give the expression of excess pressure inside a spherical drop.
- (iv) Define critical velocity.
- (v) Define Young's Modulus and give the S.I. unit of Young's Modulus.
- (vi) Define Bending of Beam.
- (vii) State Bernoulli's theorem.
- 3. Attempt any *two* of the following questions:

10

- (i) Determine Gravitational potential and field intensity due to uniform solid sphere at a point inside the solid sphere.
- (ii) Determine Poiseuille's equation for the flow of liquid through a tube.
- (iii) Determine difference of pressure on two sides of spherical drop.
- (iv) Explain bending of beam in brief.
- 4. Attempt any *one* of the following questions:

10

- (i) Derive an expression of surface tension by Jaeger's method.
- (ii) Describe the depression of a beam supported at the ends and loaded at the centre.