This question paper contains 4 printed pages]

R-94-2017

FACULTY OF SCIENCE

B.Sc. (First Semester) EXAMINATION MARCH/APRIL, 2017

(CGPA Pattern)

PHYSICS

Paper I (Phy.-111)

(Mechanics and Properties of Matter)

(MCQ+Theory)

(Friday, 7-4-2017)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) First 30 minutes are for Question No. 1 (MCQ) and remaining time for other questions.
- (iii) Figures to the right indicate full marks.
- (iv) Use black ball point pen to darken the circle of correct choice in OMR answer-sheet.
- (v) Negative marking system is applicable for wrong answer of MCQs.

(MCQs)

1. Attempt all Multiple Choice Questions:

10

- (i) As per Kepler's first law of planetory motion planets move round the sun
 - (a) In circular orbit
- (b) In an elliptical orbit
- (c) Straight orbit
- (d) Zigzag orbit
- (ii) As per Newton's law of gravitation force of attraction between any two masses m_1 and m_2 is given by :

$$(a) \qquad F = \frac{Gm_1m_2}{R^2}$$

$$(b) \qquad F = \frac{gm_1m_2}{R^2}$$

$$(c) \qquad F = \frac{GR^2}{m_1 + m_2}$$

$$(d) \qquad F = \frac{G(m_1 m_2)}{R^2}$$

P.T.O.

(iii) The relation between intensity of gravitational field (E) and gravitational potential is

(a)
$$V = \frac{-dE}{dV}$$

(b)
$$E = \frac{-dV}{dx}$$

(c)
$$E = \frac{-dx}{dV}$$

(d)
$$E = \frac{-du}{dE}$$

(iv) The excess pressure inside the liquid drop is

(a)
$$p = \frac{3T}{r}$$

$$(b) p = \frac{2T}{r}$$

(c)
$$p = \frac{6T}{r}$$

$$(d) p = \frac{r}{2T}$$

- (v) The dimensional formula for surface tension is
 - (a) [M'L'T']

(*b*) [MLT]

(c) $[M'L^0T^{-2}]$

- (d) [M'L'T⁻¹]
- (vi) The property of liquid by virtue of which, it opposes relative motion between its different layers is knwon as
 - (a) Viscosity

(b) Surface tension

(c) Diffusion

- (d) Elasticity
- (vii) The critical velocity of liquid is given by the formula

(a)
$$V_C = \frac{k}{\rho . r}$$

$$(b)$$
 $V_{\rm C} = \frac{k.\eta}{\rho.r}$

$$(c)$$
 $V_{\rm C} = \frac{\eta}{\rho}$

(d)
$$V_C = \frac{\rho . k}{r}$$

(viii) According to deformation of cube the formula for Bulk modulus is:

(a)
$$k = \frac{1}{2(\alpha - 2\beta)}$$

$$(b) k = \frac{1}{3(\alpha - 2\beta)}$$

$$(c) k = \frac{1}{3(\beta - 2\alpha)}$$

$$(d) \qquad k = \frac{1}{(\alpha - 2\beta)}$$

- (ix) In torsional pendulum the time period is given by:
 - (a) $T = 2\pi \sqrt{\frac{I}{C}}$

- $(b) T = 2\pi\sqrt{IC}$
- (c) $T = \pi \left(\sqrt{\frac{I}{C}} \right)$
- (d) $T = \frac{1}{2\pi} \sqrt{\frac{I}{C}}$
- (x) y by bending of beam is given by:
 - $(a) y = \frac{WL^2}{4ybd^3}$
- $(b) y = \frac{WL}{4hd^3}$
- $(c) y = \frac{WL^3}{4ybd^3}$

(d) None of these

(Theory)

2. Attempt any five of the following questions:

10

- (i) Define Kepeler's law of elliptical orbit and law of equal area.
- (ii) Define and explain gravitational potential energy.
- (iii) Define surface tension and give its C.G.S. unit.
- (iv) Explain stream line and turbulent flow.
- (v) Explain the term:
 - (a) Coefficient of viscosity
 - (b) Critical velocity.
- (vi) Define stress and strain.
- (vii) Write down the relation connecting three elastic constant.
- 3. Attempt any two of the following questions:

10

- (i) Explain ferguson method to determine the surface tension of liquid.
- (ii) Explain bending of beam.

P.T.O.

$\overline{\mathrm{W}}\Gamma$	(4)	F	94	-2	:01	17

- (iii) State and explain the intensity of gravitational field.
- (iv) Write notes on:
 - (a) Bernoulli's theorem
 - (b) Bulk modulus.
- 3. Attempt any *one* of the following questions:

10

- (i) Explain Jaegers method for the determination of surface tension of liquid.
- (ii) Explain deformation of cube and obtain expression for modulus of rigidity.