This question paper contains 4 printed pages]

V-111-2017

FACULTY OF SCIENCE

B.Sc. (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

(CBCS Pattern)

PHYSICS

Paper II (PHY-112)

(Mathematical Methods in Physics)

(MCQ+Theory)

(Saturday, 18-11-2017)					Time: 10.00 a.m. to 12.00 noon	
Time—2 Hours					Maximum Marks—40	
N.B.	<u>:</u> —	(i)	All questions are comp	ulsory.	V V 8 8 4 7 5 5 5 9 V	
		(ii)	All questions carry equ	ıal mar	ks. 2 % % & & & & & & & & & & & & & & & & &	
		(iii)	Use of logarithmic table permitted.	le and	non-programmable calculator is	
			(MC	\mathbf{CQs}	974 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1.	Att	empt	all:		10	
	(i) G		reen's theorem in the plan	ne is a s	special case of:	
		(a) Gauss theorem	(b)	Gauss divergence theorem	
200	2000	(c)	Stokes' theorem	(d)	Laplace's theorem	
	(ii) If curl of a vector is zero, that vector is known as:					
	3000	(a) Definite	(b)	Solenoid	
		(c)	Rotational	(d)	Irrotational	
	(iii)	If	divergence of a vector of	a point	is negative, then that point is in	
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			of that vector field	l .		
	25 B	(a) Source	(<i>b</i>)	Sink	
5206		(c	Source or sink	(d)	Source and sink	

P.T.O.

- (iv) In complex number the value of i is given by:
 - (a) $\sqrt{2}$

(b) $\sqrt{+1}$

(c) $\sqrt{-1}$

- (d) 1
- (v) Product of the complex number (3 + 3i) and (3 3i) is :
 - (a) 9

(b) 12

(c) 3

- (d) 18
- (vi) The moduli of product of two complex number is equal to the product of their:
 - (a) Real

(b) Imaginary

(c) Argument

- (d) Moduli
- (vii) If f'(x) goes from, then the point is minima.
 - (a) positive to negative
 - (b) negative to positive
 - (c) zero to negative
 - (d) negative to zero
- (viii) Total differentiation of g = f(x, y) is given by:

(a)
$$dg = \left(\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial y} dy\right)$$

$$(b) dg = \frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy$$

(c)
$$dg = \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)g$$

$$(d) dg = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

WT		(3) V—11	1—2017				
	(ix)	A function is said to be odd if $f(-x) = \dots$					
		(a) -f(x)					
		(b) f(x)					
		(c) $f(2x)$					
		(d) $2f(x)$					
	(x)	Function having magnitude discontinuties can be rep	resented				
		by Fourier series.					
		(a) Negative	2. 2. y.				
		(b) Zero					
		(c) Finite					
		(d) Infinite					
		(Theory)					
2.	Attempt the following questions (any five):						
	(a)	Define divergence of vector field.					
	(b)	What is Argand diagram?					
	(c)	Define chain rule in partial differentiation.					
, D	(d)	What is Dirichlet's condition?					
3000	(e)	State Green's theorem.					
1, VO	(f)	Define Moduli and argument in complex number					
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(g)	State cosine series in Fourier series.					
3.	Attempt the following questions:						
	(a)	Explain physical significance of curl of vector field.					
	Or Or						
		Explain multiplication of complex number using argand diagram.					
			P.T.O.				
3000							

WT

WT (4) V—111—2017

(b) Explain Laplace equation in problems of spherical summetry.

Or

Explain physical application of Fourier series analysis square wave.

4. Attempt the following questions:

10

(a) Derive vector tripple product, three vector $\overrightarrow{A}, \overrightarrow{B}$ and \overrightarrow{C} as $\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B} (\overrightarrow{A} \cdot \overrightarrow{C}) - C(\overrightarrow{A} \cdot \overrightarrow{B})$.

Or

(b) State Fourier series, evaluate the coefficient a_o , a_n , b_n of Fourier series.

V-111-2017