This question paper contains 4 printed pages]

AO—87—2018

FACULTY OF SCIENCE

B.Sc. (First Year) (First Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS/CGPA)

PHYSICS

Paper I (PHY-111)

(Mechanics and Properties of Matter)

(MCQ + Theory)

(Monday, 2-4-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B.:— (i) Attempt All questions.
 - (ii) Question No. 1 is MCQ type. Answer MCQ questions on OMR sheet only.
 - (iii) Question No. 2, Question No. 3 and Question No. 4 are descriptive type.
 - (*iv*) Use OMR sheet for MCQ type questions and separate answer sheet for descriptive type questions.
 - (v) Negative marking system is applicable to MCQ questions.

MCQs 10

- 1. Attempt *all* multiple choice questions.
 - (1) To every action there is an equal and opposite reaction is called Newton'slaw of motion.
 - (A) Third

(B) First

(C) Second

(D) Zeroth

P.T.O.

- (2) According to Kepler's second law, the aerial velocity of the planet:
 - (A) is directly proportional to velocity
 - (B) changes as per time
 - (C) remains constant
 - (D) is double of aerial velocity
- (3) Newton's law of Gravitation is:
 - (A) $F \propto \frac{m_1 m_2}{r^2}$

(B) $F \propto \frac{r^2}{m_1 m_2}$

(C) $G \propto \frac{m_1 m_2}{r^2}$

- (D) $G \propto \frac{r^2}{m_1 m_2}$
- (4) The excess pressure inside a soap bubble is:
 - (A) $\frac{T}{2r}$

(B) $\frac{\mathbf{T}}{r}$

(C) $\frac{2T}{r}$

- (D) $\frac{4T}{r}$
- (5) In Ferguson method the surface tension of liquid is calculated by using the formula:
 - (A) $T = \frac{2}{hrpg}$

(B) $T = \frac{hrpg}{2}$

(C) $T = \frac{rpg}{2}$

- (D) $T = \frac{rpg}{2h}$
- (6) The critical velocity of liquid is:
 - (A) Inversely proportional to radius of tube
 - (B) Directly proportional to radius of tube
 - (C) Directly proportional to density of liquid
 - (D) Inversely proportional to coefficient of viscosity of the liquid

WT			•	(3)	2	AO—87-	-2018
	(7)	The CGS unit of viscosity is:						
		(A)	erg		(B)	poise	10 + 01 50 (S. V.	
		(C)	dyne		(D)	none of these	99,550 A	3000 C
	(8)	8) The expression for time period of a torsional					lum is :	D D D
		(A)	$T=2\pi\sqrt{\frac{C}{I}}$	888		$\mathbf{T}=\pi\sqrt{rac{\mathbf{I}}{\mathbf{C}}}$		
		(C)	$T=2\pi\sqrt{\frac{I}{C}}$		(D)	$T=\pi^2\sqrt{\frac{1}{C}}$		in de la
	(9)	A beam fixed horizontally at one end and loaded at free end is called:						
		(A)	Torsional pendulu	m	(B)	Cantilever	2 Parties	
		(C)	Maxwell needle		(D)	Static torsion	80	
	(10)	The ratio of tangential stress to the shearing strain is called:						
		(A)	Bulk modulus		(B)	Young's modulı	1S	
		(C)	Stress	30,0	(D)	Modulus of rigi	idity	
	Theory							
2.	Attem	empt any five of the following questeions:						10
	(a)	Define elasticity and state three types of stress.						
	(b)	Define:						
		(i) Cantilever						
		(<i>ii</i>)	Hooke's law.	215 D.				
	(c)	Define:						
	30 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(i)	(i) Streamline flow					
	2002	(<i>ii</i>)	Viscosity.					
	(d)	Define :						
		(i) Molecular range						
		(ii)	(ii) Sphere of influence.					

m VT	(4)	AO—87—2018
------	-----	------------

- (e) Define surface tension and state its S-I unit.
- (f) State Newton's first law of motion.
- (g) Write the relation connecting three elastic constants.
- 3. Attempt any *two* of the following questions:

10

- (a) Obtain relation connecting three elastic constants.
- (b) Obtain an expression for excess pressure inside a liquid drop.
- (c) Explain determination of coefficient of viscosity by Poiseuille's method.
- (d) State and explain Kepler's laws of planetary motion.
- 4. Attempt any *one* of the following questions:

10

- (a) Obtain an expression for twisting couple on a cylindrical rod or wire.
- (b) Describe Ferguson method to find surface tension of a liquid.