This question paper contains 4 printed pages]

AO-108-2018

FACULTY OF SCIENCE

B.Sc. (First Semester) EXAMINATION

MARCH/APRIL, 2018

(CBCS/CGPA Pattern)

PHYSICS

Paper II (Phy-112)

(Mathematical Methods in Physics)

(MCQ & Theory)

(Wednesday, 4-4-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) All questions carry equal marks.
 - (iii) Use of non-programmable calculator and log table is allowed.
 - (iv) Figures to the right indicate full marks.
 - (v) Symbols have their usual meanings.

MCQ

1. Choose the *correct* alternative :

10

- (i) Gauss's divergence theorem relates volume integral of divergence of a vector to of normal component of that vector.
 - (a) Line integration
- (b) Surface integration
- (c) Volume integration
- (d) Cube integration

P.T.O.

If f'(x) goes from then the point is maxima.

(d)

(*b*)

Continuous

Negative to positive

(c)

(a)

(viii)

Explicit

Positive to negative

TX	Π.
vv	

(3)

AO-108-2018

- (ix) For an odd function area under the curve from $(-\pi \text{ to } \pi)$ is:
 - (a) —∞

 $(b) + \infty$

(c) +1

- (*d*) 0
- (x) Fourier sine series is represented by:

(a)
$$\sum_{n=1}^{\infty} b_n \sin nx$$

 $(b) \qquad \sum_{n=1}^{\infty} a_n \sin nx$

(c)
$$\sum_{n=1}^{\infty} b_n \cos nx$$

 $(d) \qquad \sum_{n=1}^{\infty} a_0 \sin nx$

Theory

2. Attempt any *five* of the following:

10

- (a) Define Gradient of a scalar field.
- (b) Define Complex number.
- (c) Define Implicit function.
- (d) State Dirichlet's condition.
- (e) State Green's theorem.
- (f) Define Argand diagram of complex no.
- (g) Define Fourier series.
- 3. Attempt the following question:

10

(a) Explain Divergence of a vector field.

Or

(b) Explain Addition of two complex no. using Argand diagram.

P.T.O.

WT (4) AO—108—2018

(c) Explain Laplace's equation in rectangular symmetry.

Or

- (d) Explain physical application of Fourier series analysis square wave.
- 4. Attempt the following question (any one):

10

(a) Show that:

$$\vec{A}\times(\vec{B}\times\vec{C})=(\vec{A}\cdot\vec{C})\vec{B}-(\vec{A}\cdot\vec{B})\vec{C}.$$

(b) Explain Graphical representation of even and odd function.

AO-108-2018