This question paper contains 4 printed pages]

W-101-2018

FACULTY OF SCIENCE

B.Sc. (First Year) (First Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS/CGPA Pattern)

PHYSICS

Paper I (Phy-111)

(Mechanics and Properties of Matter)

(MCQ & Theory)

(Tuesday, 23-10-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B.: (i) Attempt All questions.

- (ii) Question No. 1 is MCQ type. Answer MCQ questions on OMR sheet only.
- (iii) Question No. 2, Question No. 3 and Question No. 4 are descriptive type.
- (iv) Use OMR sheet for MCQ type questions and separate answersheet for descriptive type questions.
- (v) Negative marking system is applicable to wrong answer of MCQ questions.

MCQ

1. Attempt All Multiple Choice Questions:

10

- (i) Momentum is the product of:
 - (a) Mass and Volume
- (b) Pressure and Velocity
- (c) Mass and Pressure
- (d) Mass and Velocity
- (ii) The Kepler's third law of motion is:
 - (a) $T^2 \propto a^3$

(b) $T^2 \propto a^2$

(c) $T^2 \propto a$

(d) $T^3 \propto a^3$

P.T.O.

- (iii) The gravitational potential at a distance 'r' from mass 'M' is given by:
 - (a) $\frac{GM}{r^2}$

 $(b) - \frac{GM}{r^3}$

 $(c) - \frac{GM}{r}$

- $(d) \frac{GM}{r^2}$
- (iv) The excess pressure inside a liquid drop is:
 - (a) $\frac{T}{r}$

 $(b) \qquad \frac{2T}{r}$

(c) $\frac{2T}{r^2}$

- $(d) \qquad \frac{2T}{r^4}$
- (v) The surface tension of water is 73 dynes/cm. The radius of water drop is 0.1 cm. Then the excess pressure inside the liquid drop is:
 - (a) 1460 dynes/cm^2
- (b) 1560 dynes/cm^2
- (c) 1660 dynes/cm^2
- (d) 1860 dynes/cm^2
- (vi) The dimensional formula for viscosity is:
 - (a) $[ML^{-1}T^{-1}]$

(b) $[ML^{-2}T^{-2}]$

(c) $[M^1L^1T^1]$

- (d) $[M^2L^2T^2]$
- (vii) The velocity of liquid layer in contact with the solid surface of the glass tube is practically:
 - (a) 1

(*b*) 0

(c) -1

- (*d*) ∞
- (viii) The ratio of uniform and normal stress on the surface of a body to the volumetric strain is called:
 - (a) Strain

(b) Bulk modulus

(c) Stress

(d) Young modulus

***	n
VV	1

(3)

W-101-2018

- (ix) The expression for depression of a beam supported at its ends and loaded in the middle is:
 - (a) $\frac{WP}{48y}$

 $(b) \qquad \frac{W^{\beta}}{48I}$

(c) $\frac{W^{\beta}}{48 y I}$

- $(d) \frac{W^2}{48 y}$
- (x) The Bending moment of the beam is:
 - (a) $\frac{Y}{R}$

(b) $\frac{R}{Y}$

(c) $\frac{R}{YI}$

(d) $\frac{YI}{R}$

Theory

2. Attempt any five of the following questions:

10

- (a) State frames of reference.
- (b) State Newton's third law of motion.
- (c) Distinguish between Adhesive force and Cohesive force.
- (d) Define surface tension and give its S.I. unit.
- (e) Define coefficient of viscosity.
- (f) Explain the following terms:
 - (i) Stress
 - (ii) Strain.
- (g) Define:
 - (i) Bulk Modulus
 - (ii) Modulus of Rigidity.

P.T.O.

$W\Gamma$ (4) $W=101$

- 3. Attempt any two of the following questions:
 - (a) Obtain an expression for Gravitational potential and Intensity at a point outside the uniform solid sphere.
 - (b) State and explain Kepler's laws of planetary motion.
 - (c) Obtain an expression for excess pressure inside a soap bubble.
 - (d) Explain Searle's viscometer for determination of viscosity of a liquid.
- 4. Attempt any *one* of the following questions:
 - (a) Explain Jaeger's method to find surface tension of liquid.
 - (b) Obtain an expression for torsional pendulum in terms of modulus of rigidity of wire.