This question paper contains 4 printed pages]

B-149-2019

FACULTY OF SCIENCE

B.Sc. (First Semester) EXAMINATION

MARCH/APRIL 2019

(CBCS/GGPA Pattern)

PHYSICS

Paper II (PHY-112)

(Mathematical Methods in Physics)

(MCQ & Theory)

(Thursday, 4-4-2019) Time: 10.00 a.m. to 12.00 noon Time—2 Hours Maximum Marks—40 N.B. :- (i)All questions are compulsory. (ii)All questions carry equal marks. Use of non-programmable calculator and log table is allowed. (iii)(iv)Figures to the right indicate full marks. Symbols have their usual meanings. (v)MCQ 10 Choose the *correct* alternative : (*i*) Vectors having same magnitude but opposite direction are : Null vector (a) (b) Equal vector (c)Unequal vector (d)Negative vector If A and B are two collinear vectors, then $A \times B = \dots$ (ii) 0 (a) (b) $AB\hat{n}$ В (c) (*d*) P.T.O.

(iii)	Th_{α}	gradiant	٦f	200102	ia	
$(\iota\iota\iota)$	1116	gradient	ΟI	Scarar	15	•

(a) Vector

(b) Scalar

(c) Zero

(d) Finite

(iv) If z is a complex number and z^{-1} is a multiplicative inverse of z, then $z.z^{-1}$ is equal to :

(a) z^2

(b) z^{-2}

(c) 1

(d) 0

(v) The modulus of the product of two complex numbers is the product of their:

- (a) Imaginary part
- (b) Argument

(c) Real part

(d) Moduli

(vi) If $z_1 = 3 + 4i$ and $z_2 = 2 + 3i$, then $z_1 - z_2$ is :

(a) 3 - i

(b) 1 + i

(c)

(d) 5 + 7i

(vii) The polar co-ordinates any given point in a plane is defined by:

 $(a) \qquad (x, y)$

(b) $(i^2, \sqrt{-1})$

(c) $\left(\frac{\theta}{x}, \frac{\theta}{y}\right)$

(d) (r, θ)

(viii) The conversion between Cartesian co-ordinate is established by basic:

(a) Algebra

(b) Geometry

(c) Trigonometry

(d) Vectors

(ix) A function is said to be odd if f(-x) =

(a) - f(x)

(b) f'(x)

(c) f(-x)

(d) f'(-x)

WT				(3))	12/2017	B—149—20)19
	(x)	Wave	e form of full	wave rectifier a	are repre	sented by	ser	ies.
		(a)	Sine		(b)	Cosine		250
		(c)	Finite		(d)	Infinite		2017
				Theory	y			
2.	Atte	Attempt the following questions (any five):						
	(a)	Defin	ne scalar trip	ole product.	1000 P			
	(<i>b</i>)	State	e Stokes theo	orem.				
(c) Define conjugate of a complex number.								
	(d)	Wha	t is Argand	diagram ?				
	(e)	Expl	ain the cond	ition for maxi	ma and	minima.	57	
	(<i>f</i>)	State	e Dirichlet's t	theorem.				
	(g)	State	e even and o	dd function.				
3.	Atte	ttempt the following questions:						
	(a)	Defin	ne curl of a	vector field an	nd give i	ts physical s	significance.	5
21701 21701				Or	3			
		With num		Argand diagran	n explair	n multiplicati	on of the comp	lex
	(b)	State	e and explair	n chain rule.				5
				Or				
		Eval 2π .	uate the coe	efficient b_n of	Fourier	series in t	he interval 0	to
520		\$300					P.T	.O.

4. Attempt the following questions:

252

10

(a) State vector triple product of three vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} and prove :

$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B}(\overrightarrow{A}.\overrightarrow{C}) - \overrightarrow{C}(\overrightarrow{A}.\overrightarrow{B})$$

Or

- (b) Write notes on:
 - (i) Extraction of roots for complex number upto nth root of unity.
 - (ii) Physical applications of Fourier series to the square wave.