This question paper contains 3 printed pages]

R-351-2017

FACULTY OF SCIENCE

B.Sc. (Second Semester) **EXAMINATION**

MAY/JUNE, 2017

COMPUTER SCIENCE

Paper IV

(Data Structure)

(MCQ+Theory)

	(MCQ	T111601 y)			
(Thursday, 4-5-2017) Time— Two Hours		Ti	Time: 10.00 a.m. to 12.00 noon		
			Maximum Marks—40		
N.B. : (i)	Attempt all questions.		2242x272x4x		
(ii)	Assume suitable data if	necessar	A		
(iii)	Figures to the right ind	licate full	marks.		
1. Choose	e the correct answer.		10		
(i)	To delete element of stack	opeı	ration is used.		
	(a) Pop	(b)	Push		
15,500 1000	(c) Remove	(d)	Delete		
(ii)	Variable contains the address of element.				
	(a) Array	(b)	Pointer		
	(c) Null	(d)	Record		
(iii)	Finding the location of given element is called				
	(a) Sorting	<i>(b)</i>	Traversing		
	(c) Searching	(d)	Inserting		
(iv)	is <i>not</i> a type of linked	d list.			
	(a) Double	<i>(b)</i>	Single		
	(c) Circular	(d)	Hybrid		
555556			P.T.O.		

(2)

R-351-2017

WT

2.

WT		(3) R—351–	-2017		
3.	(a)	What is binary tree? Explain with example.	5		
	(<i>b</i>)	Device an algorithm for linear search.	5		
		Or Service Services			
	(c)	Write an algorithm to insert an element in queue.	5		
	(d)	Explain representation of queue.	5 5		
4.	(a)	Explain stack. Write an algorithm for PUSH and POP operat	ion of		
		stack.	10		
			300		
	(<i>b</i>)	Write an algorithms for searching a linked list. When list is sorted and			
		when list is unsorted.	10		