This question paper contains 3 printed pages]

V-348-2017

FACULTY OF SCIENCE

B.Sc. (Second Semester) EXAMINATION NOVEMBER/DECEMBER, 2017

(CBCS Pattern)

COMPUTER SCIENCE

Paper IV

(Analysis of Algorithm and Data Structure)

(MCQ + Theory)

Time: 10.00 a.m. to 12.00 noon (Wednesday, 13-12-2017) Time—2 Hours Maximum Marks—40 N.B. := (i) All questions are compulsory. (ii)Figures to the right indicate full marks. Assume suitable data if necessary. (iii)MCQ 10 1. Choose suitable option: is a single elementary unit of information. (1) 6 (A) field (B) value (C) (D) record file (2)..... is a non-linear type of data structure. (A) Linked list (B) Tree (C) Stack (D) Queue Finding the location of the record with a given key value (3)Sorting (A) Traversing (B) (C) Searching (D) Inserting

P.T.O.

WT			(2)		V-348-2017	
	(4)	In lir	nked list, the situation wh	en ST	ART = NULL is o	called	
		(A)	MINFLOW	(B)	MAXFLOW		
		(C)	OVERFLOW	(D)	UNDERFLOW		
	(5)	Queue works on principle.					
		(A)	FIFO	(B)	LIFO		
		(C)	Both (A) and (B)	(D)	None of these		
	(6)		ack, the condition TOP =	NUL	L will indicate the	hat STACK has	
		(A)	One	(B)	Zero		
		(C)	Two	(D)	None of these		
	(7)	In STACK, the term POP indicates					
		(A)	Insertion	(B)	Traversing		
		(C)	Deletion	(D)	None of these		
	(8)	- Q	ree T, the line drawn	from	a node N to	a successor is	
		(A)	Leaf	(B)	Path		
		(C)	Branch	(D)	Edge		
	(9)	20141	graph, when there is a ph is called	oath b	etween any <i>two</i>	nodes, then the	
6		(A)	Connected	(B)	Complete		
	2,0,0,0	(C)	Simple	(D)	Multigraph		
	(10)	A directed graph G is said to be simple if G has no edges.					
		(A)	Horizontal	(B)	Parallel		
		(C)	Both (A) and (B)	(D)	None of these		
			Theo	$\mathbf{r}\mathbf{y}$			
	(a)	(S) (O) (B) (ain array representation of POP operations.	STAC	K and device algo	rithms for PUSH	

WT		(3) V—348	8-2017			
		Or ESSEE				
	(<i>b</i>)	Write an algorithm to traverse a linked list.	5			
	(c)	Explain array representation of queue.	5			
3.	(a)	Explain memory representation of binary tree with s diagram.				
	(<i>b</i>)	Write an algorithm for delete the node following a given not linked list.	de, in a 5			
	(c)	Explain divide and conquer approach.	5			
4.	Write	short notes on (any two):	10			
	(a)	Warshall's Algorithm				
	(<i>b</i>)	Basic data structure operations				
	(c)	Queue deletion				
	(d)	Memory representation of linked list.				