This question paper contains 4 printed pages]

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION

MARCH/APRIL 2019

(CBCS/CGPA Pattern)

MATHEMATICS

Paper IV

(Geometry)

(MCQ & Theory)

(Friday, 29-3-2019)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) First **30** minutes for Question No. **1** and remaining time for other questions.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use black ball pen to darken the circle on OMR sheet for Question No. 1.
 - (v) Negative marking system is applicable for Question No. 1 (MCQ).

MCQ

- 1. Choose the *correct* alternative for each of the following:
 - (i) 6, 2, 3 are direction ratios of a line. What are the direction cosines?
 - (a) $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$

(b) $\frac{7}{6}, \frac{2}{7}, \frac{3}{7}$

(c) $\frac{6}{7}, \frac{7}{2}, \frac{3}{7}$

(d) $\frac{6}{7}, \frac{2}{7}, \frac{7}{3}$

P.T.O.

- The foot of the perpendicular from a given point on a given straight (ii)line is called
 - (a)Direction ratios
- Direction cosines (b)
- (c)Orthogonal projection
- (d)None of these
- Two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d = 0$ (iii) are parallel if:
 - $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$ (b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

(c) $\frac{a_1}{a_2} + \frac{b_1}{b_2} + \frac{c_1}{c_2}$

- $(d) \quad a_1b_1 + a_2b_2 + c_1a_2 = 0$
- Angle between the planes x + y + z = 1 and x y = 2 is : (iv)
 - (a)

(b) 0

(c)

- (d) $\frac{\pi}{2}$
- (v) The number of arbitrary constants in the equations of a straight line is:
 - (a) $\mathbf{2}$

(b) 5

(c) 4

- (*d*)
- Any point on the line $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ is given by : (vi)
 - (a) (r+4, -4r-3, 7r-1) (b) (r-4, -4+3r, 7r+1)
 - (r + 4, -4r + 3, -7r + 1) (d) (r, -4r 3, 7r 1)
- (vii) The straight line through (a, b, c) and parallel to y-axis is:
 - (a) $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{0}$
- (b) $\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$
- (c) $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$
 - (d) $\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-c}{1}$

- (viii) The centre of the sphere $2x^2 + 2y^2 + 2z^2 2x + 4y + 2z + 3 = 0$ is:
 - (a) (-2, 4, 2)

(b) (-1, 2, 1)

- (c) $\left(\frac{1}{2}, -1, -\frac{1}{2}\right)$
- $(d) \qquad \left(\frac{-1}{2}, 1, \frac{1}{2}\right)$
- (ix) The equation of a cone whose generators intersect a given conic or touch a given sphere is of:
 - (a) First degree

- (b) Second degree
- (c) Fourth degree
- (d) None of these
- (x) Guiding curve of a right circular cylinder is:
 - (a) Any closed curve
- (b) Ellipse
- (c) Pair of straight lines
- (d) Circle

Theory

2. Attempt any two of the following:

5 each

- (a) Prove that the projection of a segment AB on a line CD is AB.cos θ , where θ is the angle between the lines AB and CD.
- (b) Prove that the two points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ lie on the same or different sides of the plane ax + by + cz + d = 0, according as the expressions

$$ax_1 + by_1 + cz_1 + d$$
, $ax_2 + by_2 + cz_2 + d$

are of the same or different signs.

- (c) Find the equation of the plane through the point (2, 3, 4) and parallel to the plane 5x 6y + 7z = 3.
- 3. Attempt any two of the following:

5 each

(a) Transform the equations

$$ax + by + cz + d = 0$$
, $a_1x + b_1y + c_1z + d_1 = 0$

of a line to the symmetrical form.

P.T.O.

- (b) Show that the line $x + 10 = \frac{(8 y)}{2} = z$ lies in the plane x + 2y + 3z = 6 and the line $\frac{1}{3}(x 2) = -(y + 2) = \frac{1}{4}(z 3)$ in the plane 2x + 2y z + 3 = 0.
- (c) Show that the lines

$$\frac{x+5}{3} = \frac{y+4}{1} = \frac{z-7}{-2}$$
, $3x + 2y + z - 2 = 0 = x - 3y - 2z - 13$

are coplanar and find the equation to the plane in which they lie.

- 4. Attempt any *two* of the following: 5 each
 - (a) Find the equation of the sphere described on the segment joining the points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ as a diameter.
 - (b) Find the equation of the cone whose vertex is the point (α, β, γ) and whose generators intersect the conic

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0, z = 0.$$

(c) Obtain the equation of the sphere which passes through the three points (1, 0, 0), (0, 1, 0), (0, 0, 1) and has its radius as small as possible.