This question paper contains 4 printed pages]

Y-93-2019

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

MATHEMATICS

Paper IV

(Geometry)

(MCQ + Theory)

(Tuesday, 19-11-2019)

Time: 10.00 a.m. to 12.00 noon

Time— Two Hours

Maximum Marks—40

- (i) All questions are compulsory. N.B. :
 - Figures to the right indicate full marks. (ii)
 - (iii)Use black ball pen to darken the circle on OMR sheet for Q. No. 1.
 - (iv) Negative marking system is applicable for Q. No. 1 (MCQs)

(MCQ)

Choose the *correct* alternative for each of the following:

10

- (i)The direction cosines of z-axis are :
 - (a) (1, 1, 1)

(*b*) (1, 0, 1)

(c) (0, 1, 0)

- (*d*) (0, 0, 1)
- (ii)The equation to a plane in normal form is:
 - $(a) \qquad \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
- $(b) \qquad \frac{x}{l} + \frac{y}{m} + \frac{z}{n} = 1$
- (c) ax + by + cz = p (d) lx + my + nz = p

P.T.O.

- (iii) The equation of the plane passes through the intersection of the planes x + y + z = 6 and 2x + 3y + 4z + 5 = 0 and the point (1, 1, 1) then the value of 'K' is:
 - (a) $\frac{3}{14}$

 $(b) \qquad \frac{2}{14}$

(c) 14

- (d) 1
- - (a) $\frac{-10}{7}$

 $(b) \qquad \frac{-6}{7}$

(c) $\frac{-8}{7}$

- (d) 1
- (v) The equation of the line through two points $(x_1, y_1 z_1)$ and (x_2, y_2, z_2) :
 - (a) $\frac{x-x}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$
 - (b) $\frac{x+x_1}{x_2-x_1} = \frac{y+y_1}{y_2-y_1} = \frac{z+z_1}{z_2-z_1}$
 - (c) $\frac{x+x_1}{x_2+x_1} = \frac{y+y_1}{y_2+y_1} = \frac{z+z_1}{z_2+z_1}$
 - (d) $\frac{x-x_1}{x_2+x_1} = \frac{y-y_1}{y_2+y_1} = \frac{z-z_1}{z_2+z_1}$

- (vi) The lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x}{2} = \frac{y+2}{2} = \frac{z-3}{-2}$ are
 - (a) Parallel

- (b) Skew
- (c) Intersecting
- (d) at right angles
- (vii) The equation to the sphere on the join of (x_1, y_1, z_1) and (x_2, y_2, z_2) as the diameter is:

(a)
$$(x - x_1) (x - x_2) (y - y_1) (y - y_2) (z - z_1) (z - z_2) = 0$$

(b)
$$\frac{x-x_1}{x-x_2} + \frac{y-y_1}{y-y_2} + \frac{z-z_1}{z-z_2} = 0$$

(c)
$$\sqrt{(x-x_1)(x-x_2)} + \sqrt{(y-y_1)(y-y_2)} + \sqrt{(z-z_1(z-z_2))} = 0$$

- (d) None of the above
- (viii) The Locus of points, common to a sphere and a plane, is :
 - (a) a circle

(b) a sphere

(c) a line

- (d) a plane
- (ix) Guiding curve of a right circular cylinder is:
 - (a) ellipse

- (b) circle
- (c) any closed curve
- (d) pair of straight lines
- (x) The number of arbitrary constants in the equation of a cone, is:
 - (a) 3

(*b*) 4

(c) 5

(*d*) 7

(Theory)

2. Attempt any two of the following:

5 each

(i) Show that the projection of a segment AB on a line CD is AB $\cos \theta$, where is the angle between the line AB and CD.

P.T.O.

- (ii) Find the equation of a plane in terms of the intercepts a, b, c which it makes on the axes.
- (iii) The direction cosines, l, m, n of two lines are connected by the relations l+m+n=0, 2lm+2ln-mn=0 Find l, m and n.
- 3. Attempt any *two* of the following:

5 each

- (i) Find the length of the perpendicular from a given point $P(x_1, y_1 | z_1)$ to a given line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$.
- (ii) Find the angle between the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ and the plane ax + by + cz + d = 0
- (iii) Find the equation of the plane containing the line $\frac{x+2}{2} = \frac{y-3}{3} = \frac{z-4}{-2}$ and the point (0, 6, 0)
- 4. Attempt any *two* of the following:

5 each

- (i) Show that the locus of points common to a sphere and a plane is a circle.
- (ii) Find the equation of the right circular cone whose vertex is the point (α, β, γ) and whose axis is the line $\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ and semi-vertical angle θ .
- (iii) Find the right circular cylinder whose radius is 2 and axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}.$