This question paper contains 4 printed pages]

BF-87-2016

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

PHYSICS

Paper III

(Kinetic Theory, Heat and Thermodynamics)

(Minetic Theory, freat a	2000	010000000000000000000000000000000000000	
(MCQ+Theory)			
(Saturday, 22-10-2016)	74 18 30 5 19 00 0	Time: 10.00 a.m. to 12.00 noon	
Time—2 Hours		Maximum Marks—40	
N.B. :— (i) Attempt All questions.			
(ii) Question No. 1 is MCQ only.		Answer MCQs on OMR sheet	
	neet f	or MCQ type questions and	
(iv) Question Nos. 2, 3 and	4 are	descriptive type questions.	
		nation is 30 minutes and for	
descriptive examination i	$\frac{1}{2}$	hours only.	
(vi) Negative marking system	is ap	oplicable to MCQ examination.	
A SA	3)		
1. Attempt all multiple choice question	.s :	10	
Thermal conductivity of a gas is due to transport of			
(a) Momentum	(<i>b</i>)	Energy	
(c) Mass	(d)	Entropy	
(ii) Diffusion is considered as the	pheno	menon of	
(a) Transport of mass	(<i>b</i>)	Transport of energy	
(c) Both (a) and (b)	(d)	None of these	
		P.T.O.	

- (iii) The Boyle temperature is given by:
 - (a) $T_B = \frac{2a}{Rb}$

 $(b) \qquad T_{\rm B} = \frac{a}{R^2 b}$

- (c) $T_B = \frac{a}{Rb}$
- $(d) \qquad T_{\rm B} = \frac{2a^2}{Rb}$
- (iv) At critical temperature, a gas can be liquefied by the increase in
 - (a) pressure alone
 - (b) volume alone
 - (c) both (a) and $(b)^{7}$
 - (d) none of the above
- (v) The correction in pressure by van der Waals' is
 - $(a) \qquad p = \frac{2a}{\sqrt{2}}$

- (b) $p = \frac{a}{V}$
- $(c) \qquad p = \frac{3a}{N}$
- $p = \frac{a}{V^2}$
- (vi) The second law of thermodynamics in terms of entropy is
 - (a) $dQ = \frac{T}{dS}$

- $dQ = \frac{dS}{T}$
- $dQ = \frac{1}{T dS}$
- (d) dQ = T . dS.
- (vii) The efficiency of Carnot's engine is
 - (a) $n \neq 1 + \frac{\overline{T}_2}{\overline{T}_1}$

(b) $\eta = 1 - \frac{T_2}{T_1}$

 $(c) \qquad \eta = 1 + \frac{T_1}{T_2}$

(d) $\eta = 1 - \frac{T_1}{T_2}$

	_
11/	r
W	

- (viii) Entropy is maximum in which state?
 - (a)solid

(b)liquid

(c) gas

- (d)onone of these
- The Clausius-Clapeyron latent heat equation is : (ix)

(a)
$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$
 (b)
$$\frac{dP}{dT} = \frac{L^2}{T(V_2 - V_1)}$$

(b)
$$\frac{d\mathbf{P}}{d\mathbf{T}} = \frac{\mathbf{L}^2}{\mathbf{T}(\mathbf{V}_2 - \mathbf{V}_1)}$$

(c)
$$\frac{dP}{dT} = \frac{L}{T^2(V_2 - V_1)}$$
 (d)
$$\frac{dP}{dT} = \frac{L}{T^2}$$

$$(d) \qquad \frac{d\mathbf{P}}{d\mathbf{T}} = \frac{\mathbf{L}}{\mathbf{T}^2}$$

Helmholtz free energy function is defined as (x)

(a)
$$F = U + TS$$

$$(b) \quad \mathbf{F} = \frac{\mathbf{\hat{U}}}{\mathbf{T}\mathbf{\hat{S}}}$$

$$(c)$$
 $F = U - TS$

(c)
$$F = U - TS$$
 (d) $F = U + PV$

(Theory)

Attempt any five of the following questions: 2.

10

- (i)Define self-diffusion.
- Define adiabatic process. $(ii)^{\circ}$
- Draw a neat labelled diagram of Andrew's experiment.
- Define critical temperature.
- State first law of thermodynamics.
- State third law of thermodynamics.
- (vii) State Gibb's function of a system.
- Attempt any *two* of the following questions:

10

- Derive an expression for mean free path of a gas molecule.
- (ii)Explain Boyle temperature. Give its conclusions.
- (iii) Explain change in entropy in reversible process.

P.T.O.

WT (4) BF 87 - 2016

(iv) Prove the T.dS equation:

$$T.dS = C_V dT + T \left(\frac{\partial P}{\partial T} \right)_V dV.$$

- 4. Attempt any one of the following questions:
 - (i) Describe Joule-Thomson Porous Plug experiment in detail.
 - (ii) Derive an expression for coefficient of viscosity of a gas.