This question paper contains 3 printed pages]

R-104-2017

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION

MARCH/APRIL, 2017

(CBCS Pattern)

PHYSICS

Paper IV

(Electricity and Magnetism)

(MCQ & Theory)

(Saturday, 8-4-2017)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

(ii) Non-programmable calculator is allowed.

MCQ

1. Choose the *correct* alternative :

10

(i) The frequency of LCR series resonance circuit is:

$$(a) f_0 = 2\pi \sqrt{\frac{1}{LC}}$$

$$(b) f_0 = \frac{1}{2\pi} \cdot \frac{1}{LC}$$

$$(c) f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

$$(d) f_0 = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{1}{LC}}$$

- (ii) For an ideal transformer:
 - $(a) \qquad V_1 I_1 = V_2 I_2$

- $(b) \qquad \mathbf{N}_1 \mathbf{I}_1 = \mathbf{N}_2 \mathbf{I}_2$
- $(c) \qquad \mathbf{N}_1 \mathbf{V}_1 = \mathbf{N}_2 \mathbf{V}_2$
- $(d) \quad V_1 I_2 = V_2 I_1$
- (iii) An inductance coil used to limit the current in a circuit is called as:
 - (a) Resistance

(b) Choke

(c) Transformer

(d) Filter

P.T.O.

- (iv) The energy stored in the inductance, when a current I is passing through it, is:
 - $(a) \qquad \frac{1}{2}\,\mathrm{LI}^2$

 $(b) \qquad \frac{1}{2} L^2 I$

(c) $2LI^2$

- (d) L^2I^2
- (v) The unit of magnetic flux in SI system is:
 - (a) Henry

(b) Weber

(c) Ampere

- (d) Farad
- (vi) The equation of electromagnetic induction is:
 - (a) $e = -\frac{dI}{dt}$

 $(b) e = -\frac{dt}{d\phi}$

(c) $e = -\frac{d\phi}{dt}$

- $(d) e = -\frac{dt}{dI}$
- (vii) The intensity of magnetisation, I =
 - (a) MV

(b) V/A

(c) V/M

- (*d*) M/V
- (viii) The permeability of magnetic material is:
 - (a) $\mu = \frac{H}{B}$

 $(b) \qquad \mu = \frac{I}{H}$

(c) $\mu = BH$

- $(d) \qquad \mu = \frac{B}{H}$
- (ix) The Amperes circuital law is started as:
 - $(a) \qquad \overline{\mathbf{B}} = \int \, \mu_0 \mathbf{I}$

(b) $\oint \bar{\mathbf{B}} \ dl = \mu_0 \mathbf{I}$

(c) $\oint \bar{B} \ dl = 2I_0$

 $(d) \qquad \oint \; \overline{\mathbf{B}} \; dl = \mu_0 \mathbf{H}$

١

- (x) The magnetic induction at a point due to a straight conductor carrying a current I is:
 - (a) $\overline{B} = \frac{\mu_0 I}{2\pi a}$

 $(b) \qquad \overline{B} = \frac{\mu_0 I}{2\pi a^2}$

(c) $\overline{B} = \frac{\mu_0 I}{\pi a}$

(d) $\overline{\overline{B}} = \frac{\mu_0 I}{2\pi}$

Theory

2. Attempt any five of the following:

10

- (a) Define power factor in an a.c. circuit.
- (b) State Faradays laws of electromagnetic induction.
- (c) Define intensity of magnetisation.
- (d) State Biot-Savart law.
- (e) Define coefficient of self inductance. State its unit.
- (f) What is hysteresis loop?
- (g) What is a transformer?
- 3. Attempt any *two* of the following:

10

- (a) Discuss on various power losses in a transformer.
- (b) Obtain an expression for self inductance of a solenoid.
- (c) Write a note on Logarithmic decrement.
- (d) Derive an expression for the force on a current carrying conductor.
- 4. Attempt the following:

10

- (a) Describe the A.C. bridge with neat diagram.
- (b) Derive an expression for the energy stored in an inductance.

Or

(x) Using Biot-Savart law, derive an expression for the magnetic induction at a point due to a straight conductor carrying current.

$$R-104-2017$$