This question paper contains 4 printed pages]

V-99-2017

FACULTY OF SCIENCE

B.Sc. (Second Semester) **EXAMINATION**

NOVEMBER/DECEMBER, 2017

(CBCS Pattern)

PHYSICS

Paper IV

(Electricity and Magnetism)

(Friday, 17-11-2017)	Time: 10.00 a.m. to 12.00 noon
Time—Two Hours	Maximum Marks—40
$NR \cdot (i) All an$	octions are compularity

- N.B.:= (i) All questions are compulsory.
 - (ii) Non-programmable calculator and log-table allowed.
 - (iii) Symbols have their usual meaning.

MCQ

- 1. Choose the *correct* alternative :
 - (i) Relation between turns ratio and current of a transformer is

$$(a) \qquad \frac{N_1}{N_2} = \frac{I_2}{I_1}$$

(b)
$$\frac{N_1}{N_2} = \frac{I_1}{I_2}$$

(c)
$$\frac{N_1}{N_2} > \frac{I_1}{I_2}$$

(d) None of these

- (ii) The choke coil is used to reduce in a circuit.
 - (a) Resistance

(b) Frequency

(c) Current

(d) None of these

- (iii) Henry is the SI unit of
 - (a) Mutual inductance

(b) Self inductance

(c) both (a) and (b)

(d) None of these

P.T.O.

- (iv) If I be the current passing through a solenoid having N no. of turns then magnetic Induction is:
 - (a) $B = \frac{\mu N}{I}$

 $(b) \qquad B = \frac{\mu I}{N}$

(c) $B = \mu NI$

- (d) B = μ I
- (v) The relation between suceptibility and permeability is
 - (a) $x = \mu$

- $(b) \quad x = \mu_0 \ \mu_r$
- $(c) \qquad x = \mu_0(\mu_r 1)$
- (d) None of these
- - (a) 0.793

(*b*) 0.693

(c) 0.963

- (d) 0.369
- (vii) Total force on a current carrying conductor in a uniform magnetic field is $F = \dots$
 - (a) $\vec{B} \times l$

(b) I l

(c) $B^2 \times l$

- (d) I $l \times \vec{B}$
- (viii) The Lorentz force law is
 - (a) $\vec{F} = \vec{E} + \vec{B}$

- $(b) \qquad \vec{F} = \vec{E} \times \vec{B}$
- (c) $\vec{\mathbf{F}} = q_0 \left(\mathbf{E} + \vec{\mathbf{V}} \times \vec{\mathbf{B}} \right)$
- (d) None of these
- - $(a) \qquad W = \frac{1}{2}LI^2$

(b) W = $2LI^2$

(c) $W = LI^2$

 $(d) \quad \mathbf{W} = \frac{1}{2} \mathbf{L}^2 \mathbf{I}$

$$(a) \qquad \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

$$(b) \quad \frac{R_1}{R_2} = \frac{R_3}{R_4}$$

$$(c) \qquad \frac{R_1}{R_3} = \frac{R_2}{R_4}$$

(d)
$$\frac{R_2}{R_1} = \frac{1}{R_3 R_4}$$

Theory

2. Attempt any five of the following:

10

(a) For a transformer if,

 N_1 = 200 turns, N_2 = 50 turns, E_1 = 120 volts, then find E_2 .

- (b) Draw circuit diagram of Owen's bridge and state its balance condition.
- (c) Define self inductance and mutual inductance.
- (d) What do you mean by damping correction?
- (e) State Ampere's circuital law.
- (f) Define magnetic induction.
- (g) State Faraday's laws of electro-magnetic induction.

P.T.O.

WΓ	(4)	V—99—201

3. Attempt any *two* of the following:

10

- (a) State and explain Biot-Savart's law.
- (b) Derive an equation for logrithmic decrement of a B.G.
- (c) Derive an expression for mutual inductance of a pair of coil.
- (d) Discuss various losses in Transformer.
- 4. Attempt any one of the following:

10

- (a) Obtain an expression for the average power in an a.c. circuit and hence define power factor.
- (b) Explain permeability and suceptibility. When magnetic intensity of 10 AT/m is applied to a specimen, a magnetic induction 7×10^{-3} Wb/m² is produced in it. Find permeability and suceptibility.

$$(\mu_0 = 4\pi \times 10^{-7} \text{ H/m})$$