This question paper contains 3 printed pages]

AO-81-2018

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS Pattern)

PHYSICS

(Heat and Thermodynamics)

Paper III

(MCQ & Theory)

(Saturday, 31-03-2018)

Time—2 Hours

Maximum Marks—40

N.B.:— (i) Attempt All questions.

(ii) Use separate answer-book/sheet for MCQs and descriptive type questions.

(iii) Negative marking system is applicable to MCQ examination.

(iv) Calculator or logarithmic table is allowed for numerical problems.

MCQ

1. Attempt all multiple choice questions:

10

- (i) The diameter of nitrogen molecule is 3.2×10^{-10} m. The number of molecules at 0° C and 1 atm pressure is 2.69×10^{25} per cm³. The mean free path for nitrogen molecule is :
 - (a) $0.008175 \times 10^{-5} \text{ m}$
- (b) 0.008175×10^{-3}
- (c) $0.008175 \times 10^{-2} \text{ m}$
- (*d*) $0.08175 \times 10^{+6}$
- (ii) The conductivity of a gas is due to transport of:
 - (a) energy

(b) momentum

(c) mass

- (d) volume
- (iii) At critical temperature of a gas can be liquefied by increase in:
 - (a) Temperature

(b) Volume

(c) Pressure

(d) None of these

P.T.O.

- (iv) The expression for critical volume is:
 - (a) $\frac{a}{27b^2}$

(b) $\frac{a}{27}$

(c) $3b^2$

- (d) 3b
- (v) In Carnot heat engine is the hot body.
 - (a) Source

- (b) Sink
- (c) Working substance
- (d) Insulating stand
- (vi) The work done in thermodynamical system is:
 - (a) dW = TdP

(b) dW = PdV

(c) dW = VdP

- (d) dW = change in volume
- (vii) According to first TdS equation, $TdS = + T\left(\frac{dP}{dT}\right)_V dV$:
 - (a) $C_P d\Gamma$

(b) $C_P \cdot C_V d\Gamma$

(c) $C_V d\Gamma$

- (d) $\frac{\mathrm{C_P}}{\mathrm{C_V}}$ $d\Gamma$
- (viii) The Gibbs thermodynamical function is given by:
 - (a) G = U TS + PV
- $(b) \qquad G = U + TS + PV$
- (c) G = TS + PV
- (d) G = TS PV
- (ix) The average energy of Plancks' oscillator is:
 - (a) E = hv

(b) E = nhv

 $(c) E = mc^2$

- (d) $E = \frac{hv}{\frac{hv}{e^{kT} 1}}$
- (x) Rayleigh-Jeans' law of radiation applies to:
 - (a) Smaller wavelengths
- (b) Longer wavelengths
- (c) All wavelengths
- (d) None of these

WT			AO-81-2018
		Theory	
2.	Attempt any five of the following:		10
	(a)	Define critical pressure	
	(<i>b</i>)	Write van der Waals' equation of state	
	(<i>c</i>)	Define temperature of inversion	
	(<i>d</i>)	State third law of Thermodynamics	
	(<i>e</i>)	Define enthalpy of the system	
	(f)	State Rayleigh-Jeans' law	
	(g)	State Stefan-Boltzmann' law.	
3.	Attempt any two of the following questions:		10
	(a)	Obtain an expression for Boyle's temperature	PET
	(<i>b</i>)	Explain Carnot's ideal heat engine	
	(<i>c</i>)	Derive Clausius-Clapeyron heat equation	
	(<i>d</i>)	Explain spectral distribution in black body radiation	S
4.	Atte	mpt any <i>one</i> of the following:	10
	(a)	Derive an expression for coefficient of viscosity of a	gas.
	(<i>b</i>)	Explain in detail Andrews' experiment.	