This question paper contains 3 printed pages]

AO—82—2018

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION

MARCH/APRIL, 2018

(CGPA Pattern)

PHYSICS

Paper III

(Kinetic Theory, Heat and Thermodynamics)

(MCQ & Theory)

(Saturday, 31-03-2018)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. : (i)All questions are compulsory.
 - (ii)Non-programmable calculator is allowed.
 - Symbols have their usual meanings. (iii)

MCQ

1. Choose the *correct* alternatives of the following: 10

- The expression for mean free path is:
 - (a) $\lambda = \frac{1}{\pi dn}$

(b) $\lambda = \frac{1}{\pi d^2 n}$ (d) $\lambda = \pi d^2 n$

(c) $\lambda = \frac{1}{\pi d}$

- The conductivity of a gas is due to transport of: (ii)
 - (a) energy

(*b*) momentum

(c) mass

- (d)volume
- At critical temperature a gas can be liquefied by the increase in: (iii)
 - (a) Temperature

(*b*) Volume

(c) Pressure

None of these (d)

P.T.O.

(iv) The expression of the critical volume is:

(a)
$$\frac{a}{27b^2}$$

(b) $\frac{a}{27}$

(c)
$$3b^2$$

(d) 3b

(v) In Carnot's heat engine.....is hot body.

(b) Sink

(d) All of these

(vi) The work done in thermodynamical system is:

(a)
$$dW = TdP$$

$$(b) dW = PdV$$

$$(c)$$
 $dW = dP$

$$(d)$$
 $dW = dV$

(vii) According to first TdS equation TdS = + $T\left(\frac{dP}{dT}\right)_V$ dV:

(a)
$$C_P d\Gamma$$

(b)
$$C_P \cdot C_V d\Gamma$$

(c)
$$C_V d\Gamma$$

(d)
$$C_P \cdot C_V$$

(viii) The Gibbs's function is thermodynamics is given by:

(a)
$$G = U - TS + PV$$

$$(b) \qquad G = U + TS + PV$$

(c)
$$G = TS + PV$$

$$(d)$$
 $G = TS - PV$

(ix) An engine works between the temperatures 30 K and 300 K. What is the efficiency?

(x) The critical temperature of CO_2 gas is:

(b)
$$21.5^{\circ}$$
C

WT			AO—82—2018
		Theory	
2.	Attempt any five of the following:		10
	(a)	Define critical pressure.	
	(<i>b</i>)	Write van der Waals' equation of state.	
	(c)	Define Inversion temperature.	
	(<i>d</i>)	State third law of thermodynamics.	
	(<i>e</i>)	Define enthalpy of the system.	
	(f)	Define adiabatic process.	
	(g)	State Gibb's function of a system.	
3.	Atte	mpt any <i>two</i> of the following:	10
	(a)	Obtain an expression for Boyle's temperature.	
	(<i>b</i>)	Derive van der Waals' reduced equation of state.	
	(c)	Explain Carnot's ideal heat engine.	
	(<i>d</i>)	Derive Clausius-Clapeyron heat equation.	
4.	Attempt any one of the following:		10
	(a)	Derive an expression for coefficient of viscosity of a	gas.
	(b)	Explain in detail Andrew's experiment	