This question paper contains 3 printed pages]

W-110-2018

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS Pattern)

PHYSICS

Paper IV

(Electricity and Magnetism)

(MCQ & Theory)

(Wednesday, 24-10-2018)

Time: 10.00 a.m. to 12.00 noon

 $\mathit{Time}{-2}\ \mathit{Hours}$

Maximum Marks—40

N.B. := (i) All questions are compulsory.

(ii) Non-programmable calculator is allowed.

MCQ

1. Choose the correct alternative of the following:

10

(1) The series resonance frequency of LCR circuit is:

$$(a) f_0 = 2\pi \frac{1}{\sqrt{LC}}$$

$$(b) f_0 = \frac{1}{2\pi LC}$$

$$(c) f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

$$(d) f_0 = \frac{1}{\sqrt{2\pi}} \frac{1}{LC}$$

- (ii) Primary and secondary of transformer having the number of turns N_1 and N_2 respectively. If this transformer is step up transformer :
 - $(a) \qquad N_1 > N_2$

 $(b) \qquad N_1 < N_2$

 $(c) \qquad N_1 = N_2$

- $(d) \qquad \frac{N_1}{N_2} = 0$
- (iii) \overrightarrow{B} is magnetic induction, its MKS unit is:
 - (a) tesla

- (b) Weber/ m^2
- (c) both (a) and (b)
- (d) None of these

P.T.O.

- (iv) S.I. unit of self-inductance is:
 - (a) Henry

(b) Ohm

(c) Farad

- (d) Ampere
- (v) The expression for periodic time of swing of coil of a B.G. is given by:
 - (a) $T = 2\pi \sqrt{\frac{I}{C}}$
- $(b) T = 2\pi \sqrt{\frac{C}{I}}$
- $(c) T = \frac{2\pi C}{I}$

- $(d) T = \sqrt{\frac{2\pi I}{C}}$
- (vi) An inductance coil used to limit the current in a circuit is called as:
 - (a) Resistance

(b) Choke

(c) Transformer

- (d) Filter
- (vii) The Ampere's circuital law is stated as:
 - (a) $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \mathbf{B}$

(b) $\oint \mathbf{B}.dl = \mu_0 \mathbf{I}$

(c) $\oint \mathbf{B} \cdot d\mathbf{I} = \mu_0 \mathbf{H}$

- (d) None of these
- (viii) In Biot-Savart's law B is inversely proportional to the :
 - (a) Cube of the distance
- (b) Current in the coil
- (c) Square of the distance
- (d) All of these
- (ix) The term $\cos \phi$ in $P = E_{rms} \times I_{rms}$, $\cos \phi$ is called as :
 - (a) True power

(b) Apparent power

(c) Power factor

- (d) Applied power
- (x) The coefficient of mutual inductance of a pair of circuit is:
 - (a) $M = \frac{-e}{dI/dt}$

 $(b) \qquad \mathbf{M} = \frac{e}{dq/dt}$

(c) $M = \frac{-e}{dq/dt}$

(d) None of these

$\overline{ m WT}$	(9)	W—110—2018
VV 1	(0)	W = 110 = 2010
	()	

Theory

2. Attempt any *five* of the following:

10

- (a) Define magnetic induction.
- (b) Explain self-induction.
- (c) Define intensity of magnetisation.
- (d) State Biot-Savart's law.
- (e) State Faraday's law of electromagnetic induction.
- (f) For a transformer if $N_1 = 100$ turns, $N_2 = 25$ turns, $E_1 = 60$ volts, then find E_2 .
- (g) What is hysteresis loop?
- 3. Attempt any two of the following:

10

- (a) Define permeability, susceptibility and hence obtain the relation between them.
- (b) Derive an expression for mutual inductance of a pair of coil.
- (c) Discuss various losses in Transformer.
- (d) Derive an expression for the force on a current carrying conductor.
- 4. Attempt any one of the following:

10

- (a) Describe a moving coil B.G. Obtain an expression for charge passing through it.
- (b) Using Biot-Savart's law, derive an expression for the magnetic induction at a point due to a straight conductor carrying current.