This question paper contains 3 printed pages]

B-109-2019

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION MARCH/APRIL, 2019

(CBCS Pattern)

PHYSICS

Paper III

(Heat and Thermodynamics)

(MCQ+Theory)

(Monday, 1-4-2019)	Time: 10.00 a.m. to 12.00 noon
(Monay) I I = 010)	

Time—2 Hours Maximum Marks—40

N.B. := (i) All questions are compulsory.

(ii) All questions carry equal marks.

(MCQ)

1. Attempt all multiple choice questions:

(i) Diffusion is considered as the phenomenon of

(A) Transport of mass (B) Transport of energy

(D)

- (ii) The mean free path is defined as
 - (A) $\lambda = \frac{N}{S}$

Both (A) and (B)

(B) $\lambda = S.N$

None of these

(C) $\lambda = N^2S$

(C)

- (D) $\lambda = \frac{S}{N}$
- (iii) The critical temperature of ${\rm CO}_2$ is :
 - (A) 13.1°C

(B) 21.5°C

(C) 31.1°C

- (D) 48.1°C
- (iv) The expression for critical pressure is
 - (A) 3b

(B) $\frac{a}{27b}$

(C) $\frac{8a}{27bR}$

(D) $\frac{a}{27b^2}$

P.T.O.

WT				(2)	B—109—2019		
	(v)	The enthalpy is given by						
		(A)	H = U + PV		(B)	H = U - PV		
		(C)	H = U + 3V		(D)	H = U + 3PV		
	(vi)	The entropy is a measure of						
		(A)	Perfect order		(B)	Disorder		
		(C)	Both (A) and (B)		(D)	None of these		
	(vii)	At absolute zero temperature the entropy tends to						
		(A)	∞ ⊗	D. VXVV	(B)			
		(C)	+1		(D)			
	(viii)	The Helmholtz function in thermodynamics is given by						
		(A)	F = U + TS		(B)	F = U + PV		
		(C)	F = U - TS		(D)	None of these		
	(ix)	x) According to Stefan's Boltzman law is						
		(A)	$E=\sigma T_0^4$		(B)	$E = \sigma T^2$		
		(C)	$E = \sigma(T^2 - T_0^2)$		(D)	$E = \sigma(T^4 - T_0^4)$		
	(x)	According to Wien's displacement law the proudct λ_m . T is						
		(A)		YYYY OCO	(B)	× ∞		
		(C)	Constant		(D)	None of these		
To Of				(Theo	ry)			
2.	Attem	Attempt any five of the following questions:						
	(a)	What is transport phenomenon?						
	(b)	Define isothermal process.						
3	(c)	Define critical temperature.						
	(d)	Draw a labelled diagram of porous plug experiment.						
	(e)	State third law of thermodynamics.						
	(f)	Define Gibbs function.						
999	(g)	Wha	t is black body ra	diation	?			

-109 - 2019
-109-1

- 3. Attempt any *two* of the following questions:
 - (a) Derive van der Waals equation of state for real gases.
 - (b) Explain Carnot's heat engine.
 - (c) Derive Clausius-Clapeyron heat equation.
 - (d) Give the deduction of Wien's distribution law.
- 4. Attempt any *one* of the following questions:

10

10

- (a) Derive an expression for coefficient of viscosity of gas.
- (b) Explain Andrew's experiment on CO₂.