This question paper contains 4 printed pages]

AO—53—2018

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS/CGPA)

CHEMISTRY

Paper VII

(Physical and Inorganic Chemistry)

(MCQ + Theory)

(Friday, 23-3-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—Two Hours

Maximum Marks—40

- N.B. := (i) Attempt AII questions.
 - (ii) All questions carry equal marks.
 - (iii) Use of logarithmic table and calculator is allowed.
 - (iv) Use separate answer sheet (OMR sheet) for MCQ (Q. No. 1).

MCQ

10

- 1. Select the *correct* answer for each of the following multiple choice questions:
 - (1) The uncertainty of measurements is practically nil, in case of:
 - (A) Large object
- (B) Electron
- (C) Small particle
- (D) Microscopic object
- (2) is a second degree differential equation.
 - (A) Albert Einstein equation
 - (B) Planck's equation
 - (C) Heisenberg's uncertainty equation
 - (D) Schrödinger's wave equation

P.T.O.

- - (A) 1-phase, 1-component system
 - (B) 2-phase, 3-component system
 - (C) 3-phase, 3-component system
 - (D) 1-phase, 3-component system
- (4) The number of components present in the system

is:

(A) One

(B) Two

(C) Three

- (D) Four
- (5) The efficiency of a heat engine operating between 400 K and 300 K is:
 - (A) 0.25

(B) 0.50

(C) 0.75

- (D) 1.00
- (6) The increase in entropy is maximum in:
 - (A) $H_{2(g)} + I_{2(g)} \longrightarrow 2HI_{(g)}$
 - $(\mathbf{B}) \qquad \mathbf{CO}_{(g)} + \frac{1}{2}\mathbf{O}_{2(g)} \longrightarrow \mathbf{CO}_{2(g)}$
 - $(\mathbf{C}) \qquad \mathbf{N_{2(g)}} + 3\mathbf{H_{2(g)}} \longrightarrow 2\mathbf{N}\mathbf{H_{3(g)}}$
 - (D) $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$
- (7) "It is impossible to take heat from a hotter reservoir and convert it completely into work by a cyclic process without transferring a part of heat to a cooler reservoir." It is the statement of:
 - (A) First law of thermodynamics
 - (B) Second law of thermodynamics
 - (C) Third law of thermodynamics
 - (D) Carnot heat theorem

- (8) Which of the following elements having odd number of neutrons and protons is stable?
 - (A) $_3Li^6$

(B) $_{5}B^{10}$

(C) $_{7}N^{14}$

- (D) All of these
- (9) Highest penetrating power is shown by:
 - (A) α-Particle

(B) β-Particle

(C) γ-Rays

- (D) None of these
- (10) $Fe(OH)_3$ is an example of:
 - (A) Crystalline Precipitate
 - (B) Gelatinous Precipitate
 - (C) Curdy Precipitate
 - (D) None of the above

Theory

Section A: Physical Chemistry

- 2. Attempt any two of the following:
 - (a) State and discuss Heisenberg's uncertainty principle.
 - (b) Describe KI-H₂O system on the basis of phase rule.
 - (c) Define entropy. Give mathematical expression and unit. Explain physical significance of entropy.
 - (d) A tennis ball weighing 25 g is to be located within 0.02Å. What is the uncertainty in its velocity? Comment on your result.

 $(h = 6.626 \times 10^{-34} \text{Js})$

AO - 53 - 2018

- 3. Attempt any two of the following:
 - (a) (i) Write a note on Compton effect.
 - (ii) Define critical solution temperature. What is the effect of impurities on critical solution temperature?

P.T.O.

WT (4) AO-53-2018

- (b) Draw a well labelled phase diagram of water system and discuss its salient features.
- (c) Describe Carnot's cycle.
- (d) (i) Calculate the entropy change involved in the thermodynamic expansion of 2.5 moles of a gas from a volume of 9 litres to a 90 litres at 301 K. ($R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)
 - (ii) Calculate the entropy change, when one mole of ethanol is evoporated at 78°C. The molar heat of vaporisation of ethanol is 38.76 k.Jmol⁻¹.

Section B: Inorganic Chemistry

- 4. Attempt any two of the following:
 - (a) (i) Define Isotopes and Isobars with suitable examples.
 - (ii) Explain the effect of Temparature on Precipitation.
 - (b) Explain the conditions for completeness of Precipitation.
 - (c) What is Nuclear Fission reaction? Explain Plutonium bomb.
 - (d) Define Binding energy. Calculate the binding energy per nucleon of ${}_{2}\mathrm{He^{4}}$ which has Isotopic mass 4.00260 amu.

Given: Mass of neutron = 1.008665 amu

Mass of proton = 1.007277 amu

Mass of electron = 0.0005486 amu.