This question paper contains 4 printed pages]

BF-86-2016

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

MATHEMATICS

Paper VII

(Group Theory)

(MCQ+Theory)

(Friday, 21-10-2016)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. :— (i) First 30 minutes for Question No. 1 and remaining time for other questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use black pen to darken the circle on OMR sheet for Q. No. 1 (MCQ).
 - (iv) Negative marking system is applicable for Q. No. 1 (MCQ).

 (MCQ)
- 1. Choose the *correct* alternative for each of the following: 1 each
 - (i) Let n > 0 be a fixed integer and $a \equiv b \mod n$, if :
 - (a) $n \mid (a + b)$

(b) $n \mid (a - b)$

(c) $n \mid (b-a)$

- (d) $n \mid (b \div a)$
- (ii) G is a group then which of the following is true?
 - (a) $a, b \in G \Rightarrow a \cdot b \in G$
 - (b) $a, b, c \in G \Rightarrow a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - (c) There exists an element $e \in G$ such that $a \cdot e = e \cdot a = a$ for all G
 - (d) All of the above

- (iii) Let G be the set of all 2 \times 2 non-singular matrices then G is :
 - (a) infinite, non-abelian group
 - (b) finite, abelian group
 - (c) infinite, abelian group
 - (d) finite, non-abelian group
- (iv) If H is a subgroup of G and K is a subgroup of H, then:
 - (a) K is empty set
- (b) K = G
- (c) K is subgroup of G
- (d) G is subgroup of K
- (v) If H is subgroup of G, $a \in G$, then which of the following is a right coset of H in G?
 - $(a) \qquad \mathbf{H} a = \{ah | h \in \mathbf{H}\}\$
- (b) $Ha = \{a^{-1}ha | h \in H\}$
- (c) $Ha = \{aha^{-1} | h \in H\}$
- $(d) \qquad \mathbf{H} a = \{ h \, a | \ h \in \mathbf{H} \}$
- (vi) If H and K are finite subgroups of G of orders o(H) and o(K), respectively, then O(HK) = ?
 - (a) $\frac{o(H) \ o(K)}{o(H \cap K)}$

(b) o(H) . o(K)

(c) $o(H \cap K)$

- (d) $o(H) \cdot o(K) \cdot o(H \cap K)$
- (*vii*) If ϕ is a homomorphism of G into \overline{G} , then $\phi(x^{-1}) = ?$
 - (a) $\phi(x)$

(*b*) $\phi(x)^{-1}$

(c) e

- (d) \overline{e}
- (viii) If ϕ is a homomorphism of G into \overline{G} with kernel K, then K is :
 - (a) a normal subgroup of G
 - (b) a normal subgroup of \bar{G}
 - (c) non-empty subset of \overline{G}
 - (d) None of the above

WT	(3)	BF—86—2016

- (ix) What is an automorphism of a group G?
 - (a) It is onto
 - (b) It is isomorphism
 - (c) It is mapping from G to itself
 - (d) All of the above
- (x) If G is a finite group and $a \in G$, then $a^{O(G)} = ?$
 - (a) a

(b) *e*

(c) a^{-1}

(d) O(G)

(Theory)

2. Attempt any two of the following:

5 each

- (a) If a and b are integers, not both 0, then prove that (a, b) exists, moreover, we can find integers m_0 and n_0 such that $(a, b) = m_0 a + n_0 b$.
- (b) If G is a group, then prove that:
 - (*i*) For every $a \in G$, $(a^{-1})^{-1} = a$
 - (ii) For all $a, b \in G$, $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
- (c) Prove that if G is an abelian group, then prove that for all $a, b \in G$ and all integers n, $(a \cdot b)^n = a^n \cdot b^n$.
- 3. Attempt any two of the following:

5 each

- (a) Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$.
- (b) If G is a finite group and H is a subgroup of G, then prove that O(H) is a divisor of O(G).
- (c) If H is a subgroup of G and N is a normal subgroup of G, show that $H \cap N$ is a normal subgroup of H.
- 4. Attempt any *two* of the following:

5 each

(a) Suppose G is a group N a normal subgroup of G, define the mapping ϕ from G to G/N by $\phi(x) = Nx$ for all $x \in G$, then prove that ϕ is a homomorphism of G onto G/N.

- (b) Prove that every permutation is the product of its cycles.
- (c) For two permutations:

$$\psi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & \\ 1 & 3 & 2 & 4 \end{pmatrix}$$

and
$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ & & & \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

Compute $\psi \phi$ and $\phi \psi$.