This question paper contains 4 printed pages]

R - 85 - 2017

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL, 2017

MATHEMATICS

Paper VII

(Group Theory)

(MCQ & Theory)

(Wednesday, 5-4-2017)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B.: (i) First 30 minutes for Q. No. 1 and remaining time for other questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use black ball pen to darken the circle on OMR sheet for Q. No. 1.
 - (iv) Negative marking system is applicable for Q. No. 1 (MCQ).

MCQ

- 1. Choose the *correct* alternative for each of the following: 1 each
 - (i) If a and b are two integers, not both zero, and if (a, b) denotes gcd of a and b, then which of the following is true?
 - (a) (a, b) = (-a, b)
- (b) (a, b) = (a, -b)
- (c) (a, b) = (-a, -b)
- (d) All of these

P.T.O.

- (ii) Let S be a set, $T = S^*$, define $\tau : S \to T$ by $S\tau =$ complement of $\{s\}$ in S = :
 - (a) S-s

 $(b) \quad \{s\} - S$

(c) $S - \{s\}$

- (d) S
- (iii) For the group G of all integers $0, \pm 1, \pm 2, \dots$ with respect to the operation of usual sum of integers and $a \in G$, what is a^{-1} ?
 - (*a*) 0

(b) 1

(c) $\frac{1}{a}$

- (*d*) –*a*
- (iv) If G a group, then for all $a, b \in G$, $(a \cdot b)^{-1} =$
 - (a) $a^{-1} \cdot b^{-1}$

(b) $b^{-1} \cdot a^{-1}$

(c) $a \cdot b^{-1}$

- (d) $b^{-1} \cdot a$
- (v) If H is a subgroup of a group G and for $a, b \in G$, $a \equiv b \mod H$, then which of the following is true?
 - (a) $ab \in H$

 $(b) \quad ab^{-1} \in \mathbf{H}$

(c) $a^{-1}b \in H$

- $(d) \quad a^{-1}b^{-1} \in \mathbf{H}$
- (vi) If P is a prime number and a is any integer, then which of the following always holds ?
 - $(a) a^p \equiv 1 \mod p$
- $(b) a^p \equiv 0 \mod p$
- $(c) \qquad a^p \equiv p \mod p$
- $(d) \qquad a^p \equiv a \mod p$
- (vii) If G is a group of finite order and $a \in G$, then how are O(a) and O(G) related:
 - (a) $0(a) \mid 0(G)$
 - $(b) \qquad 0(\mathbf{G}) \mid 0(a)$
 - $(c) \qquad 0(a) > 0(G)$
 - (d) 0(a) is always equal to 0(G)

- (viii) Which of the following is not homomorphism under usual addition?
 - (a) $\phi(x) = x + 1$ for all $x \in G$
 - (b) $\phi(x) = e \text{ for all } x \in G$
 - (c) $\phi(x) = 2x$ for all $x \in G$
 - (d) $\phi(x) = x \text{ for all } x \in G$
- (ix) What is an isomorphism from a group G into a group \overline{G} ?
 - (a) only homomorphism
 - (b) onto homomorphism
 - (c) one-to-one homomorphism
 - (d) one-to-one onto mapping
- (x) If ϕ be a homomorphism of G onto \overline{G} with kernel K, then:
 - (a) G/K = G

(b) G/K \approx G

(c) $G/K \approx \bar{G}$

(d) $G/K = \bar{G}$

Theory

2. Attempt any two of the following:

- 5 each
- (a) If $\sigma: S \to T$, $\tau: T \to U$ and $\mu: U \to V$, then prove that :

$$(\sigma \cdot \tau) \cdot \mu = \sigma \cdot (\tau \cdot \mu).$$

- (b) If G is a group, then prove that:
 - (i) For every $a \in G$, $(a^{-1})^{-1} = a$.
 - (ii) Every $a \in G$ has a unique inverse in G.
- (c) If H is a subgroup of G and N is a normal subgroup of G, then show that $H \cap N$ is a normal subgroup of H.
- 3. Attempt any two of the following:

5 each

(a) Prove that the relation $a \equiv b \mod H$ is an equivalence relation.

P.T.O.

		 . `)'	1	~ ~		CT	CV	. U	. (n)			
WT	(4	7,4	<i>S</i> ,	T	4%	ĭ	₹	-8	5	20	1	7

- (b) If G is a group, N a normal subgroup of G, then prove that G/N is also a group.
- (c) Show that every subgroup of an abelian group is normal.
- 4. Attempt any *two* of the following: 5 each
 - (a) If ϕ is a homomorphism of G into \overline{G} , then prove that :
 - (i) $\phi(e) = \overline{e}$, the unit element of \overline{G} .
 - (*ii*) $\phi(x^{-1}) = \phi(x)^{-1}$, for all $x \in G$.
 - (b) If G is a group, then prove that A(G), the set of automorphisms of G, is also a group.
 - (c) Find the orbits and cycles of the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$$