This question paper contains 6 printed pages]

R-103-2017

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL, 2017

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(MCQ & Theory)

(Friday, 7-4-2017)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (i) Attempt All questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Negative marking system is applicable for wrong answers of MCQ.
 - (iv) Use black ball point pen to darken circle of correct answer in OMR sheet. Circle once darkened is final.

MCQ

- 1. Choose the *correct* alternative for each of the following: 1 each
 - (i) If p is a polynomial such that deg $p \ge 1$, then p has at least one root. It is known as:
 - (a) Existence Theorem
 - (b) Uniqueness Theorem
 - (c) Fundamental Theorem of Algebra
 - (d) Lagrange's Mean Value Theorem

P.T.O.

(ii)Consider the system of equations:

$$iz_1 + z_2 = 1 + i$$

$$2z_1 + (2 - i)z_2 = 1.$$

What are the values of z_1 and z_2 ?

- (a)
- $z_1 = i$ and $z_2 = -i$ (b) $z_1 = -i$ and $z_2 = i$
- (c)
- z_1 = 2i and z_2 = i (d) z_1 = -2i and z_2 = i
- A boundary condition is a condition on the solution at: (iii)
 - Two or more points (a)
 - (b) One point
 - (c) Singular and regular points
 - (d)Pole
- The equation $L(y) = y'' + a_1y' + a_2y = 0$ if it has two repeated roots (iv) r_1 , r_2 of characteristic polynomial p. Then its solutions are :
 - $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = e^{-r_2 x}$
 - (b) $\phi_1(x) = e^{-r_1x}$ and $\phi_2(x) = e^{r_2x}$
 - (c) $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = e^{r_2 x}$
 - (d) $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = x e^{r_1 x}$
- Which of the following is true?
 - (a) $\|\phi(x)\| = \left[\left|\phi(x)\right|^2 + \left|\phi'(x)\right|^2\right]^{\frac{1}{2}}$
 - (b) $\|\phi(x)\| = \left[|\phi(x)| |\phi'(x)| \right]^{\frac{1}{2}}$
 - (c) $\|\phi(x)\| = \left[\phi(x)\phi'(x)\right]^{\frac{1}{2}}$
 - (d) $\|\phi(x)\| = \left[\left|\phi(x)\right|^2 \left|\phi'(x)\right|^2\right]^{\frac{1}{2}}$

- Two functions ϕ_1 , ϕ_2 defined on an interval I are said to be linearly (vi)dependent on I if there exist two constants c_1 , c_2 not both zero, such that:
 - (a)
- $c_1\phi_1(x) + c_2\phi_2(x) = 1$ (b) $c_1\phi_1(x) + c_2\phi_2(x) = 0$
 - (c)
- $c_1\phi_1(x) + c_2\phi_2(x) = \infty$ (d) $c_1\phi_1(x) + c_2\phi_2(x) = -1$
- A linear differential equation of order n with variable coefficients is (vii) an equation of the form:

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = b(x)$$

where a_0, a_1, \dots, a_n, b are complex-valued functions on some real interval I. Points where $a_0(x) = 0$ are called :

- Non-singular points (a)
- (b) Boundary points
- (c)Regular points
- (d)Singular points
- If the coefficients a_k of L are constants, then which of the following (viii) is correct?
 - $W(\phi_1, \phi_2, \dots, \phi_n)(x) = e^{a_1(x + x_0)} W(\phi_1, \phi_2, \dots, \phi_n)(x_0)$ (a)
 - $W(\phi_1, \phi_2, \dots, \phi_n)(x) = e^{a_1(x x_0)} W(\phi_1, \phi_2, \dots, \phi_n)(x_0)$ (*b*)
 - $W(\phi_1, \phi_2, \dots, \phi_n)(x) = e^{-a_1(x x_0)} W(\phi_1, \phi_2, \dots, \phi_n)(x_0)$ (c)
 - $W(\phi_1, \phi_2, \dots, \phi_n)(x) = e^{-a_1(x + x_0)} W(\phi_1, \phi_2, \dots, \phi_n)(x_0)$ (*d*)
- The equation $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = b(x)$ (ix)If b(x) = 0 for all x on I, then L(y) = 0. It is known as :
 - (a) Homogeneous equation
 - (b) Non-homogeneous equation
 - (c)Ricatti equation
 - Bernoulli's equation (d)

P.T.O.

- (x) The solution of the equation y' 2y = 1 is :
 - (a) $\phi(x) = \frac{1}{2} + ce^{-2x}$, where c is any constant
 - (b) $\phi(x) = -\frac{1}{2} + ce^{2x}$, where c is any constant
 - (c) $\phi(x) = \frac{1}{2} ce^{2x}$, where c is any constant
 - (d) $\phi(x) = -\frac{1}{2} ce^{-2x}$, where c is any constant

Theory

2. Attempt any two of the following:

5 each

(a) Consider the equation y' + ay = 0 where a is a complex constant. If c is any complex number then show that the function ϕ defined by :

$$\phi(x) = ce^{-ax}$$

is a solution of this equation and moreover every solution has this form.

- (b) Consider the equation y'' = 3x + 1:
 - (i) Find all solutions on the interval $0 \le x \le 1$.
 - (ii) Find that the solutions which satisfies $\phi(0) = 1$ and $\phi'(0) = 2$.
- (c) Solve the following system for z_1 , z_2 , z_3 :

$$3z_1 + z_2 - z_3 = 0$$

 $2z_1 - z_3 = 1$
 $z_2 + 2z_3 = 2$.

3. Attempt any two of the following:

5 each

(a) Two solutions ϕ_1 , ϕ_2 of L(y) = 0 are linearly independent on an interval I if and only if $W(\phi_1, \phi_2)(x) \neq 0$ for all x in I.

(b) Find the all solutions of the equation:

$$y'' + 9y = \sin 3x.$$

(c) Let a_1 , a_2 be constants and consider the equation :

$$L(y) = y'' + a_2 y' + a_2 y = 0.$$

If r_1 , r_2 are distinct roots of the characteristic polynomial p, where $p(r)=r^2+a_1r+a_2$ then prove that the functions ϕ_1 , ϕ_2 defined by :

$$\phi_1(x) = e^{r_1 x}, \ \phi_2(x) = e^{r_2 x}$$

are solution of L(y) = 0.

4. Attempt any two of the following:

5 each

(a) Let b_1 , b_2 ,, b_n be non-negative constants such that for all x in I:

$$|a_j(x)| \le b_j, (j = 1, 2, ..., n)$$

and define K by

$$K = 1 + b_1 + b_2 + \dots + b_n$$

If x_0 is a point on I and ϕ is a solution of L(y) = 0 on I then prove that :

$$\|\phi(x_0)\| e^{-K|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\| e^{K|x-x_0|}$$

for all x in I.

(b) Find two linearly independent solutions of the equation:

$$(3x - 1)^2 y'' + (9x - 3) y' - 9y = 0 \text{ for } x > \frac{1}{3}.$$

P.T.O.

(c) Consider the equation $L(y) = y'' + a_1 y' + a_2 y = 0$ show that a_1 and a_2 are uniquely determined by any basis ϕ_1 , ϕ_2 for the solutions of L(y) = 0 it satisfying $L(\phi_1) = L(\phi_2) = 0$ show that :

$$a_1 = \frac{-\begin{vmatrix} \phi_1 & \phi_2 \\ \phi_1'' & \phi_2'' \end{vmatrix}}{W(\phi_1, \phi_2)} \text{ and } a_2 = \frac{\begin{vmatrix} \phi_1' & \phi_2' \\ \phi_1'' & \phi_2'' \end{vmatrix}}{W(\phi_1, \phi_2)}.$$