This question paper contains 5 printed pages]

V - 98 - 2017

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION OCTOBER/NOVEMBER, 2017

(CBCS/CGPA)

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(MCQ+Theory)

(Thursday, 16-11-2017)

Time: 2.00 p.m. to 4.00 p.m.

Time—Two Hours

Maximum Marks—40

- N.B. := (i) First 30 minutes for Q.No. 1 and remaining time for other questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use black ball pen to darken the circle on OMR sheet for Q. No. 1.
 - (iv) Negative marking system is applicable for Q. No. 1 (MCQs)

MCQ

- 1. Select the *correct* answer:
 - (i) If p is polynomial deg $p \ge 1$ with leading coefficient $a_0 \ne 0$, then p has:
 - (A) At least one root
 - (B) Exactly n roots
 - (C) One or two roots
 - (D) Infinitely many roots
 - (ii) Let p be a polynomial of deg $n \ge 1$ with leading coefficient 1 and let r be a root of p. Then $p(z) = (z r) \ q(z)$ where :
 - (A) q is a polynomial of degree n+1 with leading coefficient 1
 - (B) q is a polynomial of degree n-1 with leading coefficient 1
 - (C) q is a polynomial of degree n+2 with leading coefficient 1
 - (D) q is a polynomial of degree n-2 with leading coefficient 1

P.T.O.

- (iii) An initial condition is a condition on the solution at:
 - (A) two points
 - (B) two or more than two points
 - (C) infinite points
 - (D) one point
- (iv) The characteristic polynomial of y'' y' + 6y = 0 is :
 - (A) $r^2 + r + 6$
- (B) $r^2 r + 6$

(C) $r^2 + 6$

- (D) r 6
- (v) The solution of $y' + 3y = \cos x$ is :
 - (A) $\phi(x) = \frac{1}{10} [3 \cos x + \sin x] + Ce^{-3x}$
 - (B) $\phi(x) = \frac{-1}{10} [3 \cos x + \sin x] + Ce^{3x}$
 - (C) $\phi(x) = \frac{1}{10} [3 \cos x \sin x] + Ce^{3x}$
 - (D) $\phi(x) = \frac{-1}{10} [3 \cos x \sin x] + Ce^{3x}$
- (vi) The solution of $y' + y = e^x$ is:
 - (A) $\phi(x) = \frac{e^{-\lambda}}{2} + Ce^{\lambda}$ where C is any constant
 - (B) $\phi(x) = \frac{e^x}{2} + Ce^{-x}$ where C is any constant
 - (C) $\phi(x) = \frac{-e^{-\lambda}}{2} + Ce^{\lambda}$
 - (D) $\phi(x) = \frac{e^{-\lambda}}{3} + Ce^{-x}$

(vii) If $L(y) = y^{(n)} + a$, $y^{(n-1)} + \dots + a_n y = b(x)$

If $b(x) \neq 0$ for some $x \in I$, then L(y) = b(x) is called:

- (A) Riccati equation
- (B) Homogeneous equation
- (C) Non-homogeneous equation
- (D) Lagrange's equation
- (*viii*) Let α , β be any two constants and x_0 be any real number. On any interval I containing x_0 there exists at most one solution ϕ of the initial value problem :

$$L(y) = 0$$
, $y(x_0) = \alpha$, $y'(x_0) = \beta$

It is known as:

- (A) Uniqueness theorem
- (B) Format theorem
- (C) Existence theorem
- (D) Cauchy theorem
- (ix) The solution of the equation $y'' + \frac{1}{x}y' \frac{1}{x^2}y = 0$ is :
 - (A) $\frac{1}{x^2}$

(B) $\frac{1}{x}$

(C) $\frac{1}{x^3}$

- (D) $\frac{1}{x^4}$
- - (A) $\|\phi(x)\| e^{-k|x+x_0|} \le \|\phi(x)\| \le \|\phi(x_1)\| e^{-k|x-x_0|}$
 - (B) $\|\phi(x_0)\| e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\| e^{k|x-x_0|}$
 - (C) $\|\phi(x_0)\| e^{k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\| e^{-k|x-x_0|}$
 - (D) $\|\phi(x)\| e^{k|x-x_0|} \le \|\phi(x_0)\| \le \|\phi(x)\| e^{-k|x-x_0|}$

P.T.O.

Theory

2. Attempt any two of the following:

5 each

(a) If r is a root of multiplicity m of a polynomial P, deg $p \ge 1$, then prove that :

$$p(r) = p'(r) = \dots p_{(r)}^{(m-1)} = 0$$

and $p^m(r) \neq 0$.

(b) Consider the equation y' + ay = b(x) where a is constant and b is continuous function on an interval I. If x_0 is a point in I and C is any constant prove that the function ϕ defined:

$$\phi(x) = e^{-ax} \int_{x_0}^{x} e^{at} b(t) dt + ce^{-ax}$$

is a solution of this equation.

(c) Prove that $\phi(x) = e^{-\sin x}$ is a solution of differential equation :

$$y' + (\cos x)y = 0.$$

3. Attempt any two of the following:

5 each

(a) If ϕ_1 , ϕ_2 are solution of $L(y) = y'' + a_1y' + a_2y = 0$ on an interval I containing a point x_0 , then prove that :

$$W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)} W(\phi_1, \phi_2)(x_0).$$

- (b) For any real x_0 and constants α , β , prove that there exists a solution ϕ of initial value problem L(y) = 0 $y(x_0) = \alpha$, $y'(x_0) = \beta$ on $-\infty < x < \infty$.
- (c) Find all solutions of the equation:

$$y^{\prime\prime} + y - 2y = 0.$$

4. Attempt any two of the following:

5 each

(a) Let $\phi_1, \phi_2, \dots, \phi_n$ be *n* linearly independent solution of :

$$L(y) = y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_n(x) y = 0$$

on an interval I. If ϕ is any solution of L(y) = 0 on I, then prove that ϕ can be represented in the form :

$$\phi = C_1 \phi_1 + C_2 \phi_2 + \dots + C_n \phi_n$$

where C_1 , C_2 , C_n are constants.

(b) Find two linearly independent solution of the equation:

$$(3x-1)^2y'' + (9x-3)y' - 9y = 0$$
 for $x > \frac{1}{3}$.

(c) Consider the equation $y'' + \alpha(x)y = 0$ where α is a continuous function on $-\infty < x < \infty$ which is period $\xi > 0$, let ϕ_1 , ϕ_2 be basis for the solutions satisfying :

$$\phi_1(0) = 1, \quad \phi_2(0) = 0$$

$$\phi_1'(0) = 0, \quad \phi_2'(0) = 1$$

show that $W(\phi_1, \phi_2)(x) = 1$ for all x.