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MCQ
1. Select the correct answer :

@)

(i1)

If p is polynomial deg p = 1 with leading coefficient a;y # 0, then p

has :

(A) At least one root

(B)  Exactly n roots

(C)  One or two roots

(D)  Infinitely many roots

Let p be a polynomial of deg n > 1 with leading coefficient 1 and let

r be a root of p. Then p(z) = (z — r) g(z) where :

(A)
(B)
(©)
(D)

q is a polynomial of degree n + 1 with leading coefficient 1
q is a polynomial of degree n — 1 with leading coefficient 1
q is a polynomial of degree n + 2 with leading coefficient 1

q is a polynomial of degree n — 2 with leading coefficient 1
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An initial condition is a condition on the solution at :
(A) two points

(B) two or more than two points

(C) infinite points

(D)  one point

The characteristic polynomial of y” — '+ 6y =0 is :
A r2+r+6 B) r2_-r+86
©C r2+6 D) r-6

The solution of y* + 3y = cos x is :

(A 0(x) = % [3 cos x +sin x|+ Ce >

B) o) = % [3 cos x + sin x] + Ce*

C)  okx)= % [3 cos x —sin x|+ Ce™*

D)  O(x) = % [3 cos x —sin x] + Ce™*

The solution of y’ 4+ y=¢" is :

i
(A  dx)= eT +Ce" where C is any constant

X

B)  ox)= % + Ce " where C is any constant

Wt
2 +Ce
2

©) o) =

»y
D) o()=-+C”
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If b(x)#0 for some x € I, then L(y)=b(x) is called :

(A) Riccati equation

(B) Homogeneous equation

(C) Non-homogeneous equation

(D) Lagrange’s equation

Let o, B be any two constants and x; be any real number. On any

interval I containing x, there exists at most one solution ¢ of the initial
value problem :

L(J’) = 09 y(x0) = O, y/(XO) ~ B

It is known as :

(A) Uniqueness theorem (B)  Format theorem
(C) Existence theorem (D)  Cauchy theorem
. : @) 1

The solution of the equation » + ; S —y 0 is :

1 1
A — B =

X X

1 1
© = D) —

X X
If b1, by, weveeenn. b, be non-negative constants such that for all
xinl| a;(x} <b;, (j=1,2,...cc... n) defined by e =1+ by + by + ...
+ b, If Ay is a point in I and ¢ is a solution of L(y) = y() 4
al(x) y(n D + a (x)y 0 on I, then :

B) o)1 el < (o) Il I oGx, ) Il e
B) ol e <o) I <1 0(xo) | 7
(©)  [0Gig) €™ =0 < [19G0) | <11 oCxy) I 0
D) oGl e <11 0x0) I £ 0Co) | ™

P.T.O.
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Theory
2. Attempt any two of the following : 5 each

(@) If r is a root of multiplicity m of a polynomial P, deg p > 1, then prove

that :
pr)=p'(r)=............ p((;”)_l) =
and p" (r)# 0.

b) Consider the equation )’ + ay = b(x) where a is constant and b is
continuous function on an interval I. If x, is a point in I and C is
any constant prove that the function ¢ defined :

dx)=e “ jﬁ e’ b(t)dt + ce ™
X0
is a solution of this equation.
(e) Prove that ¢(x) = e " ¥ is a solution of differential equation :
¥+ (cos x)y =0.
3. Attempt any two of the following : 5 each

(@) If ¢;, ¢, are solution of L(y)=y"+a;y"+a,y=0 on an interval I

containing a point x(, then prove that :
W01, 0,) () = e 1T WO, 0,) (x)-

(b) For any real x; and constants o, , prove that there exists a
solution ¢ of initial value problem L(y) = 0 y(x,) =0, »'(x,) = on
— 0 < X < oo,

(e) Find all solutions of the equation :

y'+y-2y=0.
4. Attempt any two of the following : 5 each

(@) Let ¢, 0y ccvveeenn. ¢, be n linearly independent solution of :

L) =y" +a,(x) y" D + ., +a,(x)y=0
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on an interval I. If ¢ is any solution of L(y) = 0 on I, then prove that
0 can be represented in the form :

O0=Cid; +Cry + ..o +C,0

where Cq, Cy, ..covenenne. C,, are constants.
(b) Find two linearly independent solution of the equation :

1
Bx=1)2y” + Ox =3)y’ =9y =0 for x > =

(c) Consider the equation y” + a(x)y =0 where o is a continuous function

on — o < x < o which is period £ > 0, let ¢,, ¢, be basis for the solutions
satisfying :

¢, 0)=1, ¢,(0)=0

01(0)=0, ¢,(0)=1
show that W(¢,, ¢,) (x) =1 for all x.
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