This question paper contains 3 printed pages]

AO-80-2018

FACULTY OF ARTS AND SCIENCE

B.A./B.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL, 2018

(CBCS/CGPA)

MATHEMATICS

Paper VII

(Group Theory)

(MCQ & Theory)

(Wednesday, 28-03-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B.:— (i) First 30 minutes for Q. No. 1 and remaining time for other questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use black ball pen to darken the circle on OMR sheet for Q. No. 1.
 - (iv) Negative marking system is applicable for Q. No. 1 (MCQs).

MCQ

- 1. Choose the correct alternative for each of the following: 1 each
 - (i) The mapping τ of S into T is said to be onto T if given $t \in T$ there exists an element $s \in S$ such that:
 - (a) $\tau = st$

(b) $t = s\tau$

(c) $s = t\tau$

- (d) None of these
- (ii) Greatest common divisor of (60, 24):
 - (a) -12

(b) -24

(c) 12

- (d) 24
- (iii) If a and b are integers, not both 0, then (a, b) exists, moreover, we can find integers m_0 and n_0 such that (a, b) =
 - (a) ma + nb

(b) m + n

(c) a + b

(d) moa + nob

P.T.O.

- If G is a group and a, $u, w \in G$, then cancellation law is: (iv)
 - (a) $a \cdot u = a \cdot w$ implies u = w(*b*)
 - $u \cdot (a \cdot w) = (u \cdot a)w$ (c)
- (*d*) None of these

 $u \cdot a = a \cdot u$

- If H is a subgroup of G, $a \in G$, then which of the following is a right (v)coset of H in G?
 - $Ha = \{ah \mid h \in H\}$ (a)
- (*b*) $Ha = \{ha | h \in H\}$
- (c)
- $Ha = \{a^{-1}ha \mid h \in H\}$ (d) $Ha = \{ah^{-1}a \mid h \in H\}$
- (VI)If p is a prime number and a is any integer, then $a^p \equiv d \mod p$. This theorem is known as:
 - Euler theorem (a)
- (b) Lagrange's theorem
- (c) Sylow's theorem
- (d) Fermat theorem
- If G is a finite group and N is a normal subgroup of G, then (vii)o(G/N) =
 - o(G) + o(N)(a)

(b) o(G) - o(N)

o(G)/o(N)(c)

- (d) o(G) \times o(N)
- A mapping φ from a group G into a group \overline{G} is said to be a homomorphism (viii) if for all $a, b \in G$:
 - $\varphi(ab) = a\varphi(b)$ (a)

(*b*) $\varphi(ab) = \varphi(a) \varphi(b)$

 $\varphi(ab) = b\varphi(a)$

- (d)ab = (a) (b)
- Let G, G* and G* be the groups. Then which of the following is most (ix)correct?
 - G is isomorphic to itself (a)
 - (b) G is isomorphic to G*, then G* is isomorphic to G
 - G is isomorphic to G*, G* is isomorphic to G**, then G is isomorphic (c) to G**
 - (*d*) All of the above
- Every permutation is a product of: (X)
 - 2 cycles (a)

3 - cycles (*b*)

(c)4 - cycles (d)5 - cycles Theory

2. Attempt any two of the following:

5 each

- (a) If a is relatively prime to b but $a \mid bc$, then prove that $a \mid c$.
- (b) If G is a group, then prove that:
 - (i) Every $a \in G$ has a unique inverse in G.
 - (ii) For all $a, b \in G$, $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
- (c) Prove that if G is an abelian group, then for all $a, b \in G$ and all integers n, $(a \cdot b)^n = a^n \cdot b^n$
- 3. Attempt any two of the following:

5 each

- (a) Prove that a non-empty subset H of a group G is a subgroup of G if and only if,
 - (i) $a, b \in H$ implies that $ab \in H$.
 - (ii) $a \in H$ implies that $a^{-1} \in H$.
- (b) Prove that the subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
- (c) Show that the intersection of two normal subgroups of G is a normal subgroup of G.
- 4. Attempt any two of the following:

5 each

- (a) Suppose G is a group, N a normal subgroup of G, define the mapping φ from G to G|N by $\varphi(x) = Nx$ for all $x \in G$. Then prove that φ is a homomorphism of G onto G|N.
- (b) Prove that every group is isomorphic to a subgroup of A(s) for some appropriate S.
- (c) Let G be a group, H a subgroup of G, T an automorphism of G. Let $H(T) = \{hT \mid h \in H\}$. Prove that (H)T is a subgroup of G.