This question paper contains 5 printed pages]

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION

MARCH/APRIL, 2018

(CBCS/CGPA Pattern)

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(MCQ & Theory)

(Monday, 2-4-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- First 30 minutes for Q. No. 1 and remaining time for other N.B. : (i)questions.
 - (ii)Figures to the right indicate full marks.
 - Use black ball pen to darken the circle on OMR sheet for (iii) Q. No. 1.
 - (iv)Negative marking system is applicable for Q. No. 1 (MCQs).

MCQ

- **1** Choose the *correct* alternative for each of the following: 1 mark each
 - (i)Let p be a polynomial of degree $n \ge 1$, with leading coefficient 1 (the coefficient of z^n), and let r be a root of p. Then:

(a)
$$p(z) = (z + r) q(z)$$

$$(b) p(z) = (z - r) q(z)$$

$$(c) p(z) = zq(z-r)$$

(c)
$$p(z) = zq(z-r)$$
 (d) $p(z) = \left(\frac{z-r}{2}\right) q(z)$

P.T.O.

- (ii) The roots, with multiplicities of the polynomial $z^2 + z 6$ are:
 - (a) -3, multiplicity 1, 2, multiplicity 1
 - (b) 3, multiplicity 1, 2, multiplicity 1
 - (c) -3, multiplicity 1, -2, multiplicity 1
 - (d) 3, multiplicity 1, -2, multiplicity 1
- (iii) The solution of the differential equation y'' + 4y = 0 is :
 - (a) $\phi(x) = \sin x$

 $(b) \qquad \phi(x) = \cos x$

 $(c) \qquad \phi(x) = \sin 2x$

- $(d) \qquad \phi(x) = \tan 2x$
- (iv) The solution of the equation y' + ay = 0 where a is complex constant and c is any complex number is:
 - $(a) \qquad \phi(x) = ce^{ax}$

 $(b) \qquad \phi(x) = ce^{-ax}$

 $(c) \qquad \phi(x) = c/e^{-ax}$

- (d) None of these
- (v) Consider the system of equations:

$$iz_1 + z_2 = 1 + i$$

$$2z_1 + (2 - i)z_2 = 1$$

The determinant of the coefficients is:

 $(a) \quad -1 + 2i$

(*b*) -1 - 2i

(c) 1-2i

- (d) All of these
- (vi) The characteristic polynomial of the equation y' + y' 2y = 0 is :
 - (a) $r^2 r 2$

(b) $-r^2 + r - 2$

 $(c) \qquad r^2 + r - 2$

 $(d) \qquad r^2 + r + 2$

- (vii) The functions $\phi_1(x) = x^2$ and $\phi_2(x) = 5x^2$ are:
 - (a) Linearly dependent
 - (b) Linearly independent
 - (c) Both linearly dependent and linearly independent
 - (d) None of the above
- (viii) If ϕ_1 , ϕ_2 are two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 , then:
 - (a) $W(\phi_1, \phi_2) (x) = e^{-a_1(x x_0)} W(\phi_1, \phi_2) (x_0)$
 - (b) $W(\phi_1, \phi_2) (x) = e^{a_1(x x_0)} W(\phi_1, \phi_2) (x_0)$
 - (c) $W(\phi_1, \phi_2)(x) = e^{-a_1(x + x_0)} W(\phi_1, \phi_2)(x_0)$
 - (d) $W(\phi_1, \phi_2) (x) = e^{a_1(x + x_0)} W(\phi_1, \phi_2) (x_0)$
- (ix) If ϕ_1 , ϕ_2 ,, ϕ_n are *n* solutions of $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ on an interval I, they are linearly independent there if and only if:
 - (a) $W(\phi_1, ..., \phi_n)(x) = 0$ for all x in I
 - (b) $W(\phi_1, ..., \phi_n)(x) \neq 0$ for all x in I
 - (c) $W(\phi_1, \dots, \phi_n)(x) \neq 0$ for at least one x in I
 - (d) $W(\phi_1, ..., \phi_n)(x) = 0$ for any x in I
- (x) A set of functions which has the property that, if ϕ_1 , ϕ_2 belong to the set, and c_1 , c_2 are any two constants, then $c_1\phi_1 + c_2\phi_2$, belong to the set also, is called a :
 - (a) Linear space of functions
 - (b) Vector space of functions
 - (c) Both (a) and (b)
 - (d) None of the above

P.T.O.

Theory

2. Attempt any *two* of the following:

5 marks each

(a) Consider the equation y' + ay = b(x) where a is a constant, and b is a continuous function on an interval I. If x_0 is a point in I and c is any constant, then prove that the function ϕ defined by :

$$\phi(x) = e^{-ax} \int_{x_0}^x e^{at} b(t) dt + ce^{-ax}$$

is a solution of this equation.

- (b) If r is a root of multiplicity m of a polynomial p, deg $p \ge 1$, then prove that $p(r) = p'(r) = \dots = p^{(m-1)}(r) = 0$ and $p^{(m)}(r) \ne 0$.
- (c) Find all solutions of the equation y' + 2xy = x.
- 3. Attempt any two of the following:

5 marks each

(a) Let α , β be any two constants and let x_0 be any real number on any interval I containing x_0 , then prove that there exists at most one solution ϕ of the initial value problem :

$$L(y) = y'' + a_1 y' + a_2 y = 0, y(x_0) = \alpha, y'(x_0) = \beta.$$

(b) Let ϕ_1 , ϕ_2 be two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I, and let x_0 be any point in I. Then prove that ϕ_1 , ϕ_2 are linearly independent on I if and only if:

$$W(\phi_1, \phi_2) (x_0) \neq 0.$$

(c) Find all solutions of the following equation:

$$y'' + 4y = \cos x.$$

4. Attempt any *two* of the following:

5 marks each

(a) Prove that there exist n linearly independent solutions of:

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$$

on I.

(b) Consider the equation:

$$y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$$

for x > 0. Show that there is a solution of the form x^r , where r is a constant.

(c) Find two linearly independent solutions of the equation:

$$(3x-1)^2y'' + (9x-3)y' - 9y = 0.$$