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(i1)  Figures to the right indicate full marks.

(i1i)  Use black ball pen to darken the circle on OMR sheet for
Q. No. 1.

(iv) ~ Negative marking system is applicable for Q. No. 1 (MCQs).
MCQ
1 Choose the correct alternative for each of the following : 1 mark each

(1) Let p be a polynomial of degree n > 1, with leading coefficient 1 (the

coefficient of z?), and let r be a root of p. Then :

(@ pK2 =(z+1 g2 by pz2=(z-1 92

(@ P2 = zqz D (@ P2 = (Tr} «2)

P.T.O.
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The roots, with multiplicities of the polynomial Z2 + z — 6 are :
(a) -3, multiplicity 1, 2, multiplicity 1
(b) 3, multiplicity 1, 2, multiplicity 1
(0 -3, multiplicity 1, -2, multiplicity 1
(d) 3, multiplicity 1, -2, multiplicity 1
The solution of the differential equation y + 4y = 0 is :
(a0 ¢x =sinx (b)) ¢(x) = cos x
(0 0(x) = sin 2x (d  ¢(x) = tan2x

The solution of the equation y/ + ay = 0 where a is complex constant

and c is any complex number is :
(@  0(x) = ce®™ (b))  O(x) = ce
(o 0(x) = ce4X (d)  None of these
Consider the system of equations :
1z + zg=1+1

271 + (2 - Nzy = 1
The determinant of the coefficients is :
(a0 -1+ 21 b -1 - 27
(0 1-21 (d)  All of these
The characteristic polynomial of the equation y + y — 2y = 0 is :
(@ 1r-r-2 b -2 +r-2
(0 r+r-2 (@ P+r+2
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(vii)  The functions ¢¢(x) = x2 and do(x) = 5x2 are :
(a)  Linearly dependent
(b)  Linearly independent
(0 Both linearly dependent and linearly independent
(d) None of the above

(viii)  If ¢4, ¢ are two solutions of L(y) = ' + a1/ + ayy = 0 on an

interval I containing a point X, then :
(@ WO, 09) (0 = e21E = X0) W(9y, dg) (xp)
B Wop, 09) (0 = 1% = X0) W(0y, 0g) (xp)
©  W(op, 09) (0 = 21X + 50 W(9y, 09) (xp)
(d Wy, 09) (0 = 21X+ X0) W(oy, dg) (xp)
(x)  Ifdq, Ogy voovenne , 0, are n solutions of L(y) = ) 4 31(X)_y(ﬂ_ Dgo,

+ a,(x)y = 0 on an interval I, they are linearly independent there if

and only if :

(@ W, e , 0,) (0 =0 for all xinI

B W(Oq, e , 0,) (x) #0 for all xin I

(@ W7, .en. , 0, (x # 0 for at least one xin I
(d) Wb, v , 0,) (x) =0 for any x in I

(x) A set of functions which has the property that, if ¢;, ¢ belong to the
set, and ¢;, & are any two constants, then c;¢; + 09, belong to the

set also, is called a :
(a)  Linear space of functions
(b)  Vector space of functions
(0 Both (a) and (b)
(d)  None of the above
P.T.O.
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Theory
2. Attempt any two of the following : 5 marks each

(a)

Consider the equation ¥ + ay = b(x) where a is a constant, and b is
a continuous function on an interval I. If x; is a point in I and ¢ is

any constant, then prove that the function ¢ defined by :
0 = e [ Ebt)det ce™
X0

is a solution of this equation.

(b If ris a root of multiplicity m of a polynomial p, deg p > 1, then prove
that p(r) = p(n) = ........ = pgm =Dy = 0 and g (p) = 0.

(0 Find all solutions of the equation y + 2xy = x.

3. Attempt any two of the following : 5 marks each

(a) Let o, B be any two constants and let x; be any real number on any
interval I containing x;, then prove that there exists at most one solution
¢ of the initial value problem :
Ly = V' + aiff + apy = 0, Mxp) = o, V(xy) = B.

(b) Let ¢4, ¢9 be two solutions of L(y) = ' + a1y + ayy = 0 on an interval

(0

I, and let x; be any point in I. Then prove that ¢;, ¢, are linearly

independent on I if and only if :
W(dq, 09) (x) # 0.
Find all solutions of the following equation :

V' + 4y = cos x.
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4, Attempt any two of the following : 5 marks each
(a) Prove that there exist n linearly independent solutions of :
L) = P + a7 -V 4+ L + a, Xy =
on L
(b Consider the equation :
V=S = y=0
for x > 0. Show that there is a solution of the form x*, where ris a
constant.
(0 Find two linearly independent solutions of the equation :
(3x — 12/ + (9x - 3)y - 9y = 0.
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