This question paper contains 5 printed pages]

W-109-2018

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS/CGPA Pattern)

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(MCQ & Theory)

(Tuesday, 23-10-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B.:— (i) First 30 minutes for Q. 1 and remaining time for other questions.

- (ii) Figures to the right indicate full marks.
- (iii) Use black ball pen to darken the circle on OMR sheet for Q. 1.
- (iv) Negative marking system is applicable for Q. 1 (MCQs).

MCQ

- 1. (i) If p is a polynomial such that deg $p \ge 1$, then p has at least one root. It is known as:
 - (a) Lagrange's Theorem
 - (b) Fundamental Theorem of Algebra
 - (c) Taylor's Theorem
 - (d) Cauchy's Theorem
 - (ii) It r is such that $r^3 = 1$ and $r \ne 1$ then:
 - (a) $1 + r^2 = 0$

- $(b) 1 r + r^2 = 0$
- $(c) \qquad 1 + r + r^2 = 0$
- $(d) 1 + r r^2 = 0$

P.T.O.

If system of equations (iii)

$$3z_1 + z_2 - z_3 = 0$$

$$2z_1 - z_3 = 0$$

$$z_2 + 2z_3 = 0$$

then the value of z_1 , z_2 , z_3 are:

(a)
$$\frac{5}{3}, \frac{-8}{3}, \frac{7}{3}$$

(b)
$$-\frac{8}{3}, -\frac{5}{3}, -\frac{7}{3}$$

(c)
$$\frac{8}{3}, \frac{-5}{3}, \frac{7}{3}$$

(d)
$$\frac{8}{3}, \frac{8}{3}, \frac{7}{3}$$

- (iv)A binary condition is a condition on the solution at:
 - Two or more points (a)
- (*b*) Two and less than two points
- Infinitely many points (c)
- (*d*) One point
- The solution of the equation y' + 5y = 2 is : (v)

(a)
$$\phi(x) = \frac{-1}{3} + ce^{-3x}$$

$$(b) \qquad \phi(x) = \frac{1}{3} + ce^{3x}$$

(c)
$$\phi(x) = \frac{-2}{5} + ce^{5x}$$

(d)
$$\phi(x) = \frac{2}{5} + ce^{-5x}$$

- The equation $y' + ay = b(\lambda)$ has a solution : (vi)
 - (a)
- $\phi(x) = e^{ax} B(x) + ce^{-ax}$ (b) $\phi(x) = e^{-ax} B(x) + ce^{ax}$
- $\phi(x) = e^{-ax} B(x) + ce^{-ax}$ (d) $\phi(x) = e^{ax} B(x) + ce^{ax}$
- Two solutions ϕ_1 , ϕ_2 defined on an interval I are said to be linearly (vii) dependent on I if there exist two constants c_1 , c_2 not both zero such that:
 - (a)
- $c_1\phi_1(x) + c_2\phi_2(x) = 1$ (b) $c_1\phi_1(x) + c_2\phi_2(x) = 0$

 - (c) $c_1\phi_1(x) + c_2\phi_2(x) = 2$ (d) $\frac{1}{2}c_1\phi_1(x) + \frac{1}{2}c_2\phi_2(x) = 3$

- (*viii*) If ϕ_1 , ϕ_2 are two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 , then :
 - (a) $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)} W(\phi_1, \phi_2)(x_0)$
 - (b) $W(\phi_1, \phi_2)(x) = e^{a_1(x-x_0)} W(\phi_1, \phi_2)(x_0)$
 - (c) $W(\phi_1, \phi_2)(x) = e^{\frac{a_1(x+x_0)}{2}} W(\phi_1, \phi_2)(x_0)$
 - (d) $W(\phi_1, \phi_2)(x) = e^{-\frac{a_1(x+x_0)}{2}} W(\phi_1, \phi_2)(x_0)$
- (ix) A linear differential equation of order n with variable coefficients is of the form $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = b(x)$ points where $a_0(x) = 0$ are called:
 - (a) Trivial points

- (b) Regular and singular points
- (c) Regular points
- (d) Singular points
- (x) If $y' = -y^2 a_1(x)y a_2(x)$ is obtained from $L(y) = y'' + a_1(x)y' + a_2(x)y$ = 0 is known as:
 - (a) Bernoulli's equation
- (b) Riccati equation
- (c) Fermat's equation
- (d) Euler's equation

Theory

2. Attempt any two of the following:

5 each

(a) If the determinant Δ of the coefficients in :

$$a_{11}z_1 + a_{12}z_2 + \dots + a_{1n}z_n = c_1$$

 $a_{21}z_1 + a_{22}z_2 + \dots + a_{2n}z_n = c_2$
 \vdots \vdots \vdots \vdots \vdots

 $a_{n1}z_1 + a_{n2}z_2 + \dots + a_{nn}z_n = c_n$

is not zero. Then prove that there is a unique solution of the system for z_1, z_2, \ldots, z_n . It is given by

$$z_k = \frac{\Delta k}{\Delta} (k=1, 2, ..., n)$$

where Δk is determinant obtained by replacing its kth column a_{1k} , a_{2k} ,, a_{nk} by c_1 , c_2 , c_n .

P.T.O.

- (b) Consider the equation y' + ay = 0 where a is complex constant. If c is any complex number, prove that the function ϕ defined by $\phi(x) = ce^{-ax}$ is a solution of this equation and moreover every solution has this form.
- (c) Find all solutions of the equation $y' + e^{x}y = 3e^{x}$.
- 3. Attempt any two of the following:

5 each

(a) If a_1 , a_2 be constants and consider the equation $L(y) = y' + a_1 y' + a_2 y = 0$. If r_1 , r_2 are distinct roots of the characteristic polynomial p where $p(r) = r^2 + a_1 r + a_2$, then prove that the functions ϕ_1 , ϕ_2 defined by

$$\phi_1(x) = e^{t_1 x}, \ \phi_2(x) = e^{t_2 x}$$

are solution of L(y) = 0. If r_1 is repeated root of p, then prove that the functions ϕ_1 , ϕ_2 defined by

$$\phi_1(x) = e^{t_1 x}, \ \phi_2(x) = xe^{t_1 x}$$

are solutions of L(y) = 0.

- (b) Find the solution of initial value problem y'' 2y' 3y = 0, y(0) = 0, y'(0) = 1.
- (c) Show that the functions ϕ_1 , ϕ_2 defined by $\phi_1(x) = x^2$, $\phi_2(x) = x |x|$ are linearly independent for $-\infty < x < \infty$ and find Wronskian of these functions.
- 4. Attempt any two of the following:

5 each

(a) If ϕ_1 , ϕ_2 ,, ϕ_n are n solutions of $L(y) = y^{(x)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ on an interval I, then prove that they are linearly independent there if and only if

$$W(\phi_1, \phi_2, \ldots, \phi_n)(x) \neq 0 \text{ for all } x \in I.$$

WT (5) W-109-2018

(b) If ϕ_1 , ϕ_2 ,, ϕ_n be n solutions of $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n y = 0$ on I satisfying $\phi_i^{(i-1)}(x_0) = 1$, $\phi_1^{(j-i)}(x_0) = 0$, $j \neq i$. Prove that if ϕ is any solution of L(y) = 0 on I, there are n constants c_1 , c_2 ,, c_n such that

$$\phi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n.$$

(c) Consider the equation

$$y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$$
 for $x > 0$

Show that there is a solution of the form x^r , where r is a constant.

W-109-2018