This question paper contains 4 printed pages]

W-77-2018

FACULTY OF SCIENCE/ARTS

B.Sc./B.A. (Second Year) (Third Semester) EXAMINATION OCTOBER/NOVEMBER, 2018

(CBCS/CGPA Pattern)

MATHEMATICS

Paper VI

(Real Analysis-I)

(MCQ+Theory)

(Wednesday, 17-10-2018)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. :— (i) All questions are compulsory.
 - (ii) First 30 minutes for Q. No. 1 and remaining time for other questions.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use black ball pen to darken the circle on OMR sheet for Q. No. 1.
 - (v) Negative marking system is applicable for Q. No. 1 (MCQ).

 (MCQ)
- 1. Choose the *correct* alternative for each of the following: 1 each
 - (i) Let $f(x) = \log x$ (0 < x < ∞), then the range of f is:
 - (A) $(0, \infty)$

(B) $(-\infty, 0)$

(C) $(-\infty, \infty)$

- (D) (0, 1)
- (ii) If A is any non-empty subset of R that is bounded above, then A has a in R.
 - (A) no least upper bound
 - (B) no greatest lower bound
 - (C) greatest lower bound
 - (D) least upper bound

P.T.O.

- If $f(x) = 1 + \sin x(-\infty, < x < \infty)$ and $g(x) = x^2(0, \le x < \infty)$, then (iii) $g \circ f(x) = \dots$
 - $1 2 \sin x \sin^2 x$
- (B) $1 2 \sin x + \sin^2 x$
- $1 + 2 \sin x + \sin^2 x$ (D) $1 + 2 \sin x \sin^2 x$
- Let $\{S_n\}_{n=1}^{\infty}$ be a sequence defined by $S_1 = 1$, $S_2 = 1$ (iv)

$$S_{n+1} = S_n + S_{n-1} \ (n = 3, 4, 5,)$$

then $S_8 = \dots$

21 (A)

(B) 13

(C) 34

- (D) 25
- If $\{S_n\}_{n=1}^{\infty}$ is a sequence of real numbers which converges to L, then (v) $\{S_n^2\}_{n=1}^{\infty}$ converges to
 - (A)

(B)

 L^2 (C)

- (D) ∞
- The value of N \in I such that $\left| \frac{2n}{n+3} 2 \right| < \frac{1}{5} (n \ge N)$ holds, N = (VI)
 - (A) 27

15 (B)

(C) 4

- **(D)** 20
- Let $N = \{n_i\}_{i=1}^{\infty}$ be a sequence of positive integers where each positive (vii) integer occurs exactly one among the n_i . If $\sum_{n=1}^{\infty} a_n$ is a series of real numbers and if $b_i = a_{n_i}$ ($i \in I$), then $\sum_{i=1}^{\infty} b_i$ is called of $\sum_{n=1}^{\infty} a_n$.
 - (A) Non-negative term series
 - (B) Rearrangement series
 - Non-positive term series (C)
 - (D) None of the above

- (*viii*) If $\sum_{n=1}^{\infty} a_n$ is dominated by $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} |a_n| = \infty$, then $\sum_{n=1}^{\infty} |b_n| = \dots$
 - (A) –∞

(B) 0

(C) ∞

- (D) finite but not zero
- (ix) If $x \ge 1$, then $\sum_{n=1}^{\infty} x^n$:
 - (A) diverges

(B) converges

(C) oscillates

- (D) tends to zero
- (x) If $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = A$, then the series of real numbers $\sum_{n=1}^{\infty} a_n$ diverges
 - if:
 - $(A) \quad A < 1$

(B) A > 1

 $(C) \quad A = 1$

 $(D) \quad A = 0$

(Theory)

2. Attempt any two of the following:

- 5 each
- (a) If $f: A \to B$ and $X \subset B$, $Y \subset B$, then prove that :

$$f(X \cup Y) = f(X) \cup f(Y).$$

(b) If A, B are subsets of S, then prove that:

$$\chi_{A \cup B}(X) = \max(\chi_A, \chi_B).$$

- (c) Consider the sine function defined by $f(x) = \sin x$, $(-\infty < x < \infty)$, then:
 - (i) what is the image $\frac{\pi}{2}$ of under f
 - (ii) find $f^{-1}\left(\frac{1}{2}\right)$
 - (iii) find $f\left(\left[0,\frac{\pi}{6}\right]\right)$, $f\left(\left[\frac{\pi}{6},\frac{\pi}{2}\right]\right)$ and $f\left(\left[0,\frac{\pi}{2}\right]\right)$.

P.T.O.

3. Attempt any two of the following:

5 each

- (a) If the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is convergent, then prove that $\{S_n\}_{n=1}^{\infty}$ is bounded.
- (b) If $\{S_n\}_{n=1}^{\infty}$ is a Cauchy sequence of real numbers, then prove that $\{S_n\}_{n=1}^{\infty}$ is convergent.
- (c) For $n \in I$, let $t_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$, then prove that $\{t_n\}_{n=1}^{\infty}$ is non-decreasing and bounded.
- 4. Attempt any *two* of the following:

5 each

- (a) If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that :
 - (i) $a_1 \ge a_2 \ge \dots \ge a_n \ge a_{n+1} \ge \dots$ i.e. $\{a_n\}_{n=1}^{\infty}$ is non-increasing and
 - (ii) $\lim_{n\to\infty} a_n = 0$, then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.
- (b) If 0 < x < 1, then prove that $\sum_{n=1}^{\infty} X^n$ converges to $\frac{1}{(1-x)}$ and if $x \ge 1$ then prove that $\sum_{n=1}^{\infty} X^n$ diverges.
- (c) Show that $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges.