This question paper contains 5 printed pages]

B-131-2019

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION MARCH/APRIL 2019

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(MCQ & Theory)

(Tuesday, 2-4-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B.:— (i) First 30 minutes for question no. 1 and remaining time for other questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use black ball pen to darken the circle on OMR sheet for Question No. 1.
 - (iv) Negative marking system is applicable for Question No. 1 (MCQs).
 - (v) All question are compulsory.

MCQ

- 1. Choose the correct alternative for each of the following: 1 mark each
 - (i) If p(z) is a polynomial of degree 3 with real coefficients, then p has:
 - (a) At least one real root
- (b) At least one imaginary root
- (c) No real root
- (d) None of these
- (ii) If r is a root of a polynomial such that $r^3 = 1$ and $r \ne 1$, then:
 - (a) $1 r + r^2 = 0$
- (b) $1 + r r^2 = 0$
- $(c) 1 + r + r^2 = 0$
- $(d) \qquad 1 + r^2 = 0$

P.T.O.

	_
\ \ <i>\ I</i>	١.
1/1/	

	(iii)	The solution ϕ of differential equation $y' + y = e^x$ is given by :				
		(a)	$\phi(x) = ce^x$	(b)	$\phi(x) = ce^{-x}$	
		(c)	$\phi(x) = ce^{kx}$	(d)	None of these	
	(iv)	The	function ϕ is a solution of y	y'=f(x)	(x, y) where $y \in s$, if:	
		(a)	$\phi(x)$ is in s	(b)	$\phi'(s) = f(x, \ \phi(x))$	
		(c)	Both (a) and (b) together	(d)	None of these	
	(v)	The characteristic polynomial of the equation $y'' - y' + 6y =$				
		(a)	$r^2 + r + 6$	(b)	r^2-r+6	
		(c)				
	(vi)	If ϕ_1	and ϕ_2 are two solutions of 1	L(y) = c	$y'' + a_1 y' + a_2 y = 0$, then their	
		Wro	nskian is given by :	10,25		
		(a)	$W(\phi_1, \phi_2) = \begin{bmatrix} \phi_1 & \phi_2 \\ \dot{\phi_2} & \dot{\phi_2} \end{bmatrix}$	(b)	$W(\phi_1, \phi_2) = \phi_1 \phi_2' - \phi_1' \phi_2$	
			$W(\phi_1, \phi_2) = \phi_1 \phi_2 - \phi_1' \phi_2'$) / X / V / /	2 25 X V X V V V V V V V V V V V V V V V V	
	(vii)	an equation of the form $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y =$ where a_0, a_1, \ldots, a_n, b are complex-valued functions on some real int I, points where $a_0(x) = 0$ are called:				
	196					
	A 600 A	V CV	Regular points			
0	25 A 6	1, 10, 4	Both (a) and (b)			
9	(viii)	, V. TO.	$f(x) = \sin x$ and $\phi_2(x) = \cos x$			
200		(a)	12 6 73 94 75 85 75 75 75 75 75 75 75 75 75 75 75 75 75	(b)		
16		(c)	60, 24, 2, 2, 2, 2, 2, 3, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70	(d)		
	(ix)	0, 8, C. 2, O. 7, O. 4, W. O. P.				
		1.01.01			c_m are any m constants, then	
		$ L(c_1\phi_2 + + c_m\phi_m) = c_1L_1(\phi_1) + + c_mL(\phi_m) $ which implies $c_1\phi_1 + + c_m\phi_m$ is also a solution, then the trivial solution				
	200 PY		tion which is :	, , ,	ien die diviai soludon is die	
57	9 45 6 V	(a)	Identically zero on I	(<i>b</i>)	Identically one on I	
500		(c)	Identically infinite on I	(d)	None of these	
\sim	1 1 01 - 1	407 A.J. (\ 0.7			

- (x) The solution ϕ of the equation xy' + y = 0, such that y(1) = 1, is given by :
 - $(a) \qquad \phi(x) = x$

 $(b) \qquad \phi(x) = \frac{1}{x}$

 $(c) \qquad \phi(x) \ = \ \frac{1}{x^2}$

(d) 0

Theory

2. Attempt any two of the following:

5 each

(a) Let p be a polynomial of degree $n \ge 1$, with leading coefficient 1 (the coefficient of z^n), and let r be a root of p. Then prove that :

$$p(z) = (z - r) q(z)$$

where q is a polynomial of degree n-1, with leading coefficient 1.

(b) Consider the equation

$$y' + ay = (bx)$$

where a is a constant, and b is a continuous function on an interval I. If x_0 is a point in I and c is any constant, then prove that, the function ϕ defined by

$$\phi(x) = e^{-ax} \int_{x_0}^{x} e^{at} b(t) dt + ce^{-ax}$$

is a solution of this equation. Every solution has this form.

(c) Consider the equation

$$y' + (\cos x)y = e^{-\sin x}$$

- (i) Find the solution ϕ which satisfies $\phi(\pi) = \pi$.
- (ii) Show that any solution ϕ has the property that

$$\phi(\pi k) - \phi(0) = \pi k$$

where k is any integer.

P.T.O.

3. Attempt any *two* of the following :

5 each

(a) Let a_1 , a_2 be constants, and consider the equation

$$L(y) = y'' + a_1 y' + a_2 y = 0$$

If r_1 , r_2 are distinct roots of the characteristic polynomial p, where

$$p(r) = r^2 + a_1 r + a_2,$$

then prove that, the functions ϕ_1 and ϕ_2 defined by

$$\phi_1(x) = e^{r_1 x}, \ \phi_2(x) = e^{r_2 x}$$

are solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$, and also, if r_1 is a repeated root of p, then the function ϕ_1 , ϕ_2 defined by

$$\phi_1(x) = e^{r_1 x}, \ \phi_2(x) = xe^{r_1 x}$$

are solutions of $L(y) = y'' + a_1y' + a_2y = 0$.

(b) Let ϕ_1 , ϕ_2 be two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I, and let x_0 be point in I. Then prove that ϕ_1 , ϕ_2 are linearly independent on I if and only if

$$W(\phi_1, \phi_2) (x_0) \neq 0.$$

(c) Find all the solutions of non-homogeneous equation

$$y'' - y' - 2y = e^{-x}$$
.

4. Attempt any two of the following:

5 each

(a) Let ϕ_1 , ϕ_2 , ..., ϕ_n be the n solutions of $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ on I satisfying

$$\phi_i^{(i-1)}(x_0) = 1, \ \phi_i^{(j-1)}(x_0) = 0, \ j \neq 1$$

Prove that if ϕ is any solution of L(y) = 0 on I, there are n constants, $c_1, c_2, ..., c_n$ such that

$$\phi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n.$$

(b) Let x_0 be in I, and let $\alpha_1, \alpha_2, ..., \alpha_n$ be any n constants. Prove that there is at most one solution ϕ of

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$$

on I satisfying

$$\phi(x_0) = \alpha_1, \ \phi'(x_0) = \alpha_2, \dots, \ \phi^{(n-1)}(x_0) = \alpha_n.$$

(c) Consider the equation

$$y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$$

for x > 0.

- (i) Show that there is a solution of the form x^r , where r is a constant.
- (ii) For two linearly independent solutions for x > 0, and prove that they are linearly independent.