This question paper contains 3 printed pages]

X-56-2019

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Second Year) (Third Semester) (Regular) EXAMINATION OCTOBER/NOVEMBER, 2019

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(Monday, 18-11-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Attempt (A) or (B) (a), (b) in Question No. 1 and 2.
- 1. Attempt (A) or (B) of the following:
 - (A) If r is a root of multiplicity m of a polynomial p, deg $p \ge 1$, then prove that :

$$p(r) = p'(r) = \dots = p^{(m-1)}(r) = 0,$$

and

$$p^{(m)}(r) \neq 0.$$

If r is such that $r^3 = 1$, and $r \neq 1$, then prove that $1 + r + r^2 = 0$.

Or

(B) (a) Consider the equation

8

$$y' + ay = 0,$$

where a is a complex constant. If c is any complex number, then prove that the function ϕ defined by

$$\phi(x) = ce^{-\alpha x}$$

is a solution of this equation, and every solution has this form.

P.T.O.

7

(b) Consider the equation

$$v' + 5v = 2.$$

Show that the function ϕ given by

$$\phi(x) = \frac{2}{5} + ce^{-5x}$$

is a solution, where c is any constant. Assuming every solution has this form, find the solution satisfying $\phi(1) = 2$. Find that solution satisfying $\phi(1) = 3\phi(0)$.

- 2. Attempt (A) or (B) of the following:
 - (A) Let a_1 , a_2 be constants, and consider the equation

15

$$L(y) = y'' + a_1 y' + a_2 y = 0.$$

If r_1 , r_2 are distinct roots of the characteristic polynomial p, where

$$p(r) = r^2 + a_1 r + a_2,$$

then prove that ϕ_1 , ϕ_2 defined by

$$\phi_1(x) = e^{r_1x}, \ \phi_2(x) = e^{r_2x},$$

are solutions of L(y) = 0. If r_1 is a repeated root of p, then the functions ϕ_1 , ϕ_2 defined by

$$\phi_1(x) = e^{r_1x}, \ \phi_2(x) = xe^{r_1x}$$

are solutions of L(y) = 0.

Or

(B) (a) Prove that, two solutions ϕ_1 , ϕ_2 of $L(y) = y'' + a_1 y' + a_2 y = 0$ are linearly independent on an interval I, if, and only if,

$$W(\phi_1, \phi_2)(x) \neq 0$$

for all x in I.

(b) Find all the solutions of $y'' - y' - 2y = e^{-x}$.

- 3. Attempt any two of the four of the following: 5 each
 - (a) Prove that there exist n linearly independent solutions of $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ on I.
 - (b) Let ϕ_1 , ϕ_2 ,, ϕ_n be n linearly independent solutions of $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$

on an interval I. If ϕ is any solution of L(y) = 0 on I, then prove that ϕ can be represented in the form

$$\phi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n.$$

(c) Consider the equation

$$y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$$

for x > 0. Show that there is a solution of the form x^r , where r is a constant.

(d) Consider the equation $L(y) = y'' + a_1(x)y' + a_2(x)y = 0$. If ϕ_1 and ϕ_2 are linearly independent solutions of L(y) = 0, then prove that :

$$a_1 = \frac{\begin{vmatrix} \phi_1 & \phi_2 \\ \phi_1'' & \phi_2'' \end{vmatrix}}{W(\phi_1, \phi_2)} \text{ and } a_2 = \frac{\begin{vmatrix} \phi_1' & \phi_2' \\ \phi_1'' & \phi_2'' \end{vmatrix}}{W(\phi_1, \phi_2)}.$$