This question paper contains 4 printed pages]

Y—108—2019

FACULTIES OF ARTS AND SCIENCE

B.A./B.Sc. (Second Year) (Third Semester) (Backlog) EXAMINATION NOVEMBER/DECEMBER, 2019

(CBCS/CGPA Pattern)

MATHEMATICS

Paper VII

(Group Theory)

(MCQ + Theory)

(Thursday, 19-12-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) First 30 minutes for Question No. 1 and remaining time for other questions.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use black ball point pen to darken the circle on OMR sheet for question No. 1.
 - (v) Negative marking system is applicable for Q. No. 1.

MCQ 10

- 1. Choose the *correct* alternative for each of the following:
 - (1) If S be any non-empty set, define $i: S \to S$ by s = st for any $s \in S$. This mapping i is called mapping of S.
 - (A) Identity

(B) Many one

(C) Inverse

(D) None of these

P.T.O.

- - (A) ± 1

- (B) ±p
- (C) Both (A) and (B)
- (D) None of these
- (3) If G be the set of all real 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $ad bc \neq 0$ is a rational number, then G forms under matrix multiplication.
 - (A) an abelian group
- (B) a group
- (C) Both (A) and (B)
- (D) None of these
- - (A) $a, b \in H \Rightarrow ab \in H$
- (B) $a \in H \Rightarrow a^{-1} \in H$
- (C) Both (A) and (B)
- (D) None of these
- - (A) $a^p \equiv p \mod a$
- (B) $p^a \equiv a \mod p$
- (C) $a^p \equiv a \mod n$
- (D) $a^p \equiv a \mod p$
- - (A) $n g n^{-1} \in \mathbb{N}$

(B) $NgN^1 \in n$

(C) $gng \in N$

- (D) $g n g^{-1} \in N$
- - (A) $\phi(ab) = \phi(a) \phi(b)$
- (B) $\phi(a+b) = \phi(a) + \phi(b)$
- (C) Both (A) and (B)
- (D) $\phi(a+b) = \phi(a) \phi(b)$

$\chi \chi r$	Г
vv	

Y-108-2019

(8) If ϕ be a homomorphism of G onto \overline{G} with kernal K, and let \overline{N} be a normal subgroup of \overline{G} ,

 $N = \{x \in G \mid \phi(x) \in \overline{N}\}\$, then

- (A) $N/G \approx \overline{N}/\overline{G}$
- (B) $\bar{G}/\bar{N} \approx N/G$
- (C) $\bar{G}/N \approx \bar{G}/\bar{N}$
- (D) $G/N \approx \bar{G}/\bar{N}$
- - (A) Joint

(B) Disjoint

(C) Three

- (D) None of these
- (10) The permutation given by the cycle (1, 2, 3) is of which type?
 - (A) An even permutation
- (B) A 2-cycle
- (C) An odd permutation
- (D) None of these

Theory

2. Attempt any two of the following:

10

- (a) If $\sigma: S \to T$ and $\tau: T \to U$; then prove that $\sigma \circ \tau$ is one-to-one if each of σ and τ is one-to-one.
- (b) If a is relatively prime to b but $a \mid bc$, then prove that $a \mid c$.
- (c) Show that if every element of the group G is its own inverse, then G is abelian.
- 3. Attempt any two of the following:

10

- (a) If G is a finite group and $a \in G$, then prove that $O(a) \mid O(G)$.
- (b) Show that the relation $a \equiv b \mod H$ is an equivalence relation.
- (c) If H is a subgroup of G and N is a normal subgroup of G, then show that $H \cap N$ is a normal subgroup of H.

P.T.O.

- 4. Attempt any two of the following:
 - (a) If G is a group, N a normal subgroup of G; define the mapping ϕ from G to G | N by $\phi(x) = Nx$ for all $x \in G$. Then prove that ϕ is a homomorphism of G into G | N.

10

- (b) If G is a group, then prove that A(G), the set of automorphism of G, is also a group.
- (c) Find the orbit and cycles of the permutation:

$$\theta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 8 & 1 & 6 & 4 & 7 & 5 & 9 \end{pmatrix}.$$