This question paper contains 5 printed pages]
Y—131—2019
FACULTY OF SCIENCE
B.Sc. (Second Year) (Third Semester) (Backlog) EXAMINATION

NOVEMBER/DECEMBER, 2019

MATHEMATICS
Paper VIII

(Ordinary Differential Equations)

(MCQ & Theory)

(Saturday, 21-12-2019) Time : 2.00 p.m. to 4.00 p.m.

Time—2 Hours Maximum Marks—40

N.B. :— () First 30 minutes for Q. No. 1 and remaining time for other
questions.
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(v)  All questions are compulsory.
MCQ
1. Choose the correct alternative for each of the following : 10

@ If P is a polynomial, deg p = n>1, with leading coefficient qy # 0, then

P has :
(@) At least one root (b)  Exactly n root
(e) One or two roots (d) Infinitely many roots

(1) The determinant of the coefficients of the system of equations :
321 +29—-23 =0, 221 —23=1, 29 +223=2 1is :
(@) -3 ®) 3
) 2 d 0
P.T.O.
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(ziz) A boundary condition is a condition on the solution at :

(@)  Singular and regular points

(b)  One point

(c) Two or more points

(d) Pole.
@iv) The equation y'+a(x)y=b(x) where p(x)=0o0n I, is called :

(@) Homogeneous first order differential equation

(b)  Non-homogeneous first order differential equation

(c) Homogeneous second order differential equation

(d) Non-homogeneous second order differential equation
(v) If rq, ry are distinct roots of the characteristic polynomial P, where

P(r)=r%+a; r+ay, then the functions ¢y, ¢, defined by :
@  ¢y(x)=¢"" and 9p(x) =xe™
®)  oy(x) =€ and gy(x)=e
@ () =e " and ¢y(x)=e 2"

d)  ¢1(x)=e"" and ¢q(x) ="

i) If ¢1, 09 are any two solutions of L(y)=y"+a1y'+agy =0, cq, cy are
any two constants, then the function ¢ =cj0; +c9d9 is :
(@) Not solution of L(y) = 0
(b) A solution of L(y) = 0
(c) Characteristic polynomial of L(y) = 0

(d) None of the above

(vit)  If ¢ is a solution of the equation y"+§ y'=0, then ¢ = ...

2 -2
(@ G=cteged B)  O=cp+cpeB

-2, 2
()  O0=cy—cqe3 d)  O=cy—cged
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(viii) In the equation : ao(x)y(n) +a1(x)y(n_1) +....ta,(x)y =blx). The value
of x are called singular point if :
(@ ayx)=1 b)  aylx)=-1
() apx)#0 d)  ayx)=0

(ix)  Let by, bg,..., b, be non-negative constants such that for all x in I
la;(x)|<b;, (j=1,2,...,n),
and define %2 by
k=1+b +bg+...+b,.
If x; is a point in I, and ¢ is a solution of :

(””1)+,_.+an(x)y:0 on I, then :

L(y) = y™ + ay(x)y
@ [ loG)] [0 o [o@)] [5] [oxg) | |7
® (o] e 0l o] 5] o) | & 7l

© | lotg)| el g o] <] [olag) | Ml
(d) None of the above
(x) The solution ¢ of xy'+y=0 s.t. y(1) = 1 is given by :

1
(@  ox)=x b)  0x)= <
1
() ¢(x)=x_2 (d) None of these
Theory
Attempt any two of the following : 5 each

(@) If r is a root of multiplicity m of a polynomial p, deg p > 1, then prove

that : p(r)=p'()=..=p™ Y =0, and pP™()#0,

P.T.O.
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Consider the equation : y'+ay =0, where a is a complex constant. If

¢ is any complex number, then show that the function ¢ defined by
d(x) =ce” ™

is a solution of this equation and moreover every solution has this form.
Consider the equation y'+5y=2.

(@) Show that the function ¢ given by
d(x) = % +ce ¥

is a solution, where ¢ is any constant.

(b) Assuming every solution has this form, find that solution satisfying

o(1) = 2.

Attempt any two of the following : 5 each

(@)

)

(c)

For any real x(, and constants a, B, prove that there exists a solution

¢ of the initial value problem :
Ly)=y"+a1y'+ayy=0,
yxg) =, y'(xg) =P,
0N —co< x <oo.

If ¢; ¢9 are two solutions of L(y)=y"+a;y'+agy=0 on an interval

I containing a point x(, then prove that :
w(0y,09)() = €™ Vw9, 05)0x0)
Consider the equation y"+y'-6y=0.
(@) Compute the solution ¢ satisfying
®0) =1, ¢'(0) = 0
(b) Compute the solution y satisfying

y(0) = 0, y'(0) = 1.
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4, Attempt any two of the following : 5 each
(@) Prove that there exists n linearly independent solution of :

L(y) = y(n) n al(x)y(n—l)

+...+a,(x)=0
on an interval I.
(b) Let ¢q,...,¢,, be n linearly independent solution of :

(n-1)

L(y)=y(”)+a1(x)y +..+a,(x)=0

on an interval 1. If ¢ is any solution of L(y) = 0 on I, then prove that

¢ can be represented in the form :

(I) = Cl(l)l + Cz(|)2 +...+Cn(I)n
where C1s Cg,..-,C, are constants.

(c) Find two linearly independent solutions of the equation

(Bx-1D%y"+(9x-3)y'=9y =0

for x>—.
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