This question paper contains 5 printed pages]

Y-131-2019

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) (Backlog) EXAMINATION NOVEMBER/DECEMBER, 2019

MATHEMATICS

Paper VIII

(Ordinary Differential Equations)

(MCQ & Theory)

(Saturday, 21-12-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B.:— (i) First 30 minutes for Q. No. 1 and remaining time for other questions.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use black ball point pen to darken the circle on OMR sheet for Q. No. 1.
 - (iv) Negative marking system is applicable for Q. No. 1.
 - (v) All questions are compulsory.

MCQ

1. Choose the *correct* alternative for each of the following:

10

- (i) If P is a polynomial, deg $p = n \ge 1$, with leading coefficient $a_0 \ne 0$, then P has:
 - (a) At least one root
- (b) Exactly n root
- (c) One or two roots
- (d) Infinitely many roots
- (ii) The determinant of the coefficients of the system of equations:

$$3z_1 + z_2 - z_3 = 0$$
, $2z_1 - z_3 = 1$, $z_2 + 2z_3 = 2$ is :

(a) -3

(*b*) 3

(c) 2

(*d*) 0

P.T.O.

- (iii) A boundary condition is a condition on the solution at :
 - (a) Singular and regular points
 - (b) One point
 - (c) Two or more points
 - (d) Pole.
- (iv) The equation y' + a(x)y = b(x) where b(x) = 0 on I, is called :
 - (a) Homogeneous first order differential equation
 - (b) Non-homogeneous first order differential equation
 - (c) Homogeneous second order differential equation
 - (d) Non-homogeneous second order differential equation
- (v) If r_1 , r_2 are distinct roots of the characteristic polynomial P, where $P(r) = r^2 + a_1 r + a_2$, then the functions ϕ_1 , ϕ_2 defined by :
 - (a) $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = xe^{r_1 x}$
 - (b) $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = e^{-r_2 x}$
 - (c) $\phi_1(x) = e^{-r_1 x}$ and $\phi_2(x) = e^{-r_2 x}$
 - (d) $\phi_1(x) = e^{r_1 x}$ and $\phi_2(x) = e^{r_2 x}$
- (vi) If ϕ_1 , ϕ_2 are any two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$, c_1 , c_2 are any two constants, then the function $\phi = c_1 \phi_1 + c_2 \phi_2$ is :
 - (a) Not solution of L(y) = 0
 - (b) A solution of L(y) = 0
 - (c) Characteristic polynomial of L(y) = 0
 - (d) None of the above
- (vii) If ϕ is a solution of the equation $y'' + \frac{2}{3}y' = 0$, then $\phi = \dots$

(a)
$$\phi = c_1 + c_2 e^{\frac{2}{3}x}$$
 (b) $\phi = c_1 + c_2 e^{\frac{-2}{3}x}$

(c)
$$\phi = c_1 - c_2 e^{\frac{-2}{3}x}$$
 (d) $\phi = c_1 - c_2 e^{\frac{2}{3}x}$

- (viii) In the equation : $a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + + a_n(x)y = b(x)$. The value of x are called singular point if :
 - $(a) a_0(x) = 1$

 $(b) a_0(x) = -1$

(c) $a_0(x) \neq 0$

- $(d) a_0(x) = 0$
- (ix) Let $b_1,\ b_2,...,\ b_n$ be non-negative constants such that for all x in I $|a_j(x)| \leq b_j,\ (j=1,2,...,n),$

and define k by

$$k = 1 + b_1 + b_2 + \dots + b_n$$
.

If x_0 is a point in I, and ϕ is a solution of:

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_n(x)y = 0$$
 on I, then:

- (a) $||\phi(x)||e^{k|x-x_0|} \le ||\phi(x)|| \le ||\phi(x_0)||e^{-k|x-x_0|}$
- (b) $||\phi(x)|| e^{-k|x-x_0|} \le ||\phi(x)|| \le ||\phi(x_0)|| e^{-k|x-x_0|}$
- (c) $||\phi(x_0)||e^{-k|x-x_0|} \le ||\phi(x)|| \le ||\phi(x_0)||e^{k|x-x_0|}$
- (d) None of the above
- (x) The solution ϕ of xy'+y=0 s.t. y(1)=1 is given by :
 - $(a) \qquad \phi(x) = x$

 $(b) \qquad \phi(x) = \frac{1}{x}$

 $(c) \qquad \phi(x) = \frac{1}{x^2}$

(d) None of these

Theory

2. Attempt any two of the following:

5 each

(a) If r is a root of multiplicity m of a polynomial p, $\deg p \ge 1$, then prove that : $p(r) = p'(r) = \dots = p^{(m-1)}_{(r)} = 0$, and $p^{(m)}(r) \ne 0$.

P.T.O.

(b) Consider the equation : y'+ay=0, where a is a complex constant. If c is any complex number, then show that the function ϕ defined by

$$\phi(x) = ce^{-ax}$$

is a solution of this equation and moreover every solution has this form.

- (c) Consider the equation y' + 5y = 2.
 - (a) Show that the function ϕ given by

$$\phi(x) = \frac{2}{5} + ce^{-5x}$$

is a solution, where c is any constant.

- (b) Assuming every solution has this form, find that solution satisfying $\phi(1) = 2$.
- 3. Attempt any two of the following:

5 each

(a) For any real x_0 , and constants α , β , prove that there exists a solution ϕ of the initial value problem :

$$L(y) = y'' + a_1 y' + a_2 y = 0$$
,

$$y(x_0) = \alpha, y'(x_0) = \beta,$$

on $-\infty < x < \infty$.

(b) If ϕ_1 , ϕ_2 are two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 , then prove that :

$$w(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)}w(\phi_1, \phi_2)(x_0)$$

- (c) Consider the equation y'' + y' 6y = 0.
 - (a) Compute the solution ϕ satisfying

$$\phi(0) = 1, \ \phi'(0) = 0$$

(b) Compute the solution ψ satisfying

$$\psi(0) = 0, \ \psi'(0) = 1.$$

4. Attempt any *two* of the following:

5 each

(a) Prove that there exists n linearly independent solution of:

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_n(x) = 0$$

on an interval I.

(b) Let $\phi_1,...,\phi_n$ be n linearly independent solution of:

$$L(y) = y^{(n)} + a_1(x)y^{(n-1)} + ... + a_n(x) = 0$$

on an interval I. If ϕ is any solution of L(y) = 0 on I, then prove that ϕ can be represented in the form :

$$\phi = c_1 \phi_1 + c_2 \phi_2 + \dots + c_n \phi_n$$

where $c_1, c_2,...,c_n$ are constants.

(c) Find two linearly independent solutions of the equation

$$(3x-1)^{2}y''+(9x-3)y'-9y=0$$
 for $x > \frac{1}{3}$.