This question paper contains 4 printed pages]

Y-91-2019

FACULTY OF SCIENCE/ARTS

B.Sc./B.A. (Second Year) (Third Semester) (Backlog) EXAMINATION OCTOBER/NOVEMBER, 2019

MATHEMATICS

Paper VI

(Real Analysis-I)

(MCQ + Theory)

(Monday, 18-11-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time— Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) First 30 minutes for Q. No. 1 and remaining time for other questions.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use black ink ball pen to darken the the circles on OMR sheet forQ. No. 1.
 - (v) Negative marking system is applicable for Q. No. 1 (MCQ).

(MCQ)

- 1. Choose the most correct alternative for each of the following:
 - (i) Which of the following need not be true?
 - (a) $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$
 - (b) $f(X \cap Y) = f(X) \cap f(Y)$
 - (c) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$
 - $(d) \qquad f(X \cup Y) = f(X) \cup f(Y)$
 - (ii) Let A = [0, 1]. If $f : A \to \mathbf{R}$ is defined by f(x) = x and $g : A \to \mathbf{R}$ is defined by $g(x) = x^2$, then $\min(f, g)(x) = ?$
 - (a) 0

(*b*) 1

(c) x

(d) x^2

P.T.O.

10

(iii)	Let P	be	the	\mathbf{set}	of	prime	integers.	Which	of	the	following	is	true	?

(a) $7 \in P$ $9 \in P$

11 ∉ P (c)

(d) $7547193.65317 \in P$

(iv) Let
$$\{S_n\}_{n=1}^{\infty}$$
 be a sequence of real numbers. Then :

- (a)
 - $\lim_{n\to\infty}\inf \mathbf{S}_n\geq \lim_{n\to\infty}\sup \mathbf{S}_n \qquad \qquad (b)\quad \lim_{n\to\infty}\inf \mathbf{S}_n\leq \lim_{n\to\infty}\sup \mathbf{S}_n$
- $\lim_{n\to\infty}\inf \mathbf{S}_n = \lim_{n\to\infty}\sup \mathbf{S}_n \qquad (d) \quad \lim_{n\to\infty}\mathbf{S}_n > 0$ (c)

- (i)Every convergent sequence of real numbers is bounded.
- (ii)Every bounded sequence of real numbers is convergent. Then:
- Both (i) and (ii) are the true (a)
- (*b*) (i) is true and (ii) is false
- (i) is false and (ii) is true (c)
- both (i) and (ii) are false (d)

(vi) The limit of sequence
$$\left\{n-\frac{1}{n}\right\}_{n=1}^{\infty}$$

(a) is 0

- (b) is finite
- doesn't exist (c)
- (d) -1

(vii) For the series
$$\sum_{n=1}^{\infty} a_n$$
, if $\lim_{n\to\infty} a_n = 0$, then :

$$(a)$$
 $\sum_{n=1}^{\infty} a_n$ is convergent

$$(b)$$
 $\sum_{n=1}^{\infty} a_n$ is divergent

(c)
$$\sum_{n=1}^{\infty} a_n$$
 may or may not convergent

- The series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is:
 - (*a*) divergent

- (b) absolutely convergent
- (c) conditionally convergent
- (*d*) all of these
- (ix)Which of the following is *true*?
 - (a) $\sum_{n=1}^{\infty} n$ is convergent (b) $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent
 - (c) $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is convergent (d) $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent
- Let $\sum_{n=1}^{\infty} a_n$ be a series of non-zero real numbers and let:

$$a = \lim_{n \to \infty} \inf \left| \frac{a_{n+1}}{a_n} \right|,$$

$$A = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right|.$$

Then which of the following is true?

- (a) If A < 1, then $\sum_{n=1}^{\infty} |a_n| < \infty$
- If a > 1, then $\sum_{n=1}^{\infty} a_n$ diverges
- (c) If $a \le 1 \le A$, then the test fails
- (d) All of the above

(Theory)

2. Attempt any two of the following:

5 each

If $f: A \to B$ and $X \subset A$, $Y \subset A$ then prove that:

$$f(X \cup Y) = f(X) \cup f(Y).$$

P.T.O.

- (b) Prove that the set R of all real numbers is uncountable.
- (c) Prove that the set of all polynomial functions with integers coefficients is countable.
- 3. Attempt any two of the following:

5 each

- (a) If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.
- (b) If $\{s_n\}_{n=1}^{\infty}$ is bounded sequence of real numbers and $\{t_n\}_{n=1}^{\infty}$ convergent to 0, prove that $\{s_nt_n\}_{n=1}^{\infty}$ converges to 0.
- (c) If $\left\{s_n\right\}_{n=1}^{\infty}$ is a sequence of real numbers, then prove that :

$$\lim_{n\to\infty}\inf s_n\leq \lim_{n\to\infty}\sup s_n.$$

4. Attempt any *two* of the following

5 each

- (a) If $\sum_{n=1}^{\infty}a_n$ is a series of non-negative numbers with $s_n=a_1+a_2+\dots+a_n$ ($n\in I$). Then prove that $\sum_{n=1}^{\infty}a_n$ converges if, the sequence $\{s_n\}_{n=1}^{\infty}$ is bounded.
- (b) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then prove that $\sum_{n=1}^{\infty} a_n$ converges.
- (c) Prove that if $\sum_{n=1}^{\infty} |a_n| < \infty$, then $\left| \sum_{n=1}^{\infty} a_n \right| \le \sum_{n=1}^{\infty} |a_n|$.