This question paper contains 3 printed pages]

BF-117-2016

FACULTY OF SCIENCE

B.Sc. (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2016

PHYSICS

Paper VII

(Statistical Physics, Electromagnetic Theory and Relativity)

(MCQ & Theory)

(Saturday, 10-12-2016) Time : 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

- (ii) Question No. 1 is MCQ type. Answer MCQs on OMR sheet only.
- (iii) Question Nos. 2, 3 and 4 are descriptive type questions.
- (iv) Use separate answer book/sheet for MCQ type questions and descriptive type questions.
- (v) Negative marking system is applicable to MCQ examination.

(MCQ)

1. Attempt all multiple choice questions :

10

- (i) The thermodynamic probability is:
 - (a) Number of microstates in a given macrostate
 - (b) Number of macrostates in a given microstate
 - (c) Number of microstates in a given microstate
 - (d) Number of macrostates in a given macrostate
- (ii) The value of combinations ${}^6\mathrm{C}_3$ is :
 - (a) 18

(*b*) 9

(c) 20

(*d*) 10

P.T.O.

		\ –		V Q 78 10 78 18 94 78 18 12 14 18 12 19 1	
(iii)		particles obeying Pauli's bution law:	exclusio	on principle in the following	
	(a)	Maxwell-Boltzman	(<i>b</i>)	Fermi-Dirac	
	(c)	Bose-Einstein		All of these	
(iv)	The phase space volume in Fermi-Dirac and Bose-Einstein statistics is V =				
	(a)	h Significant	(b)	h^2	
	(c)	h^4	(d)	h^3	
(v)	Fermi-Dirac statistics is applicable to:				
	(a)	Photon gas	(b)	Electron gas	
	(c)	Boson gas	V - V - V - V - A	Neutron gas	
(vi)	Maxwell-Boltzmann statistics maximum probability distribution is given by:				
	(a)	$\frac{1}{e^{(\alpha + \beta \epsilon_i)}}$	(b)	$e^{(\alpha - \beta \epsilon_i)}$ $e^{(\alpha - \beta \epsilon_i)}$	
	(c)	$\frac{1}{e^{(\alpha^2 + \beta \epsilon_i)}}$	(d)	$e^{(\alpha - \beta \in_i)}$	
(vii)	Ampere-Maxwell law shows that a changing electric field rise to:				
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(a)	Electric field	(b)	Gravitational field	
	(c)	Magnetic field	(d)	Heat	
(viii)	The I	The Maxwell equation $\nabla \times \mathbf{E} = \frac{-\partial \mathbf{B}}{\partial t}$ is called as differential form of			
	a of electromagnetic induction.				
	(a)	Ampere's law	(<i>b</i>)	Oersted law	
	(c)	Lenz's law	(d)	Farady's law	
(ix)	5 K 41 7	ding to Einstein's special the space is constant.	neory of r	elativity velocity of	
9 9 VY	2 6 F	Proton	(<i>b</i>)	Light	

Neutron

(d)

(c)

Electron

- The time dilation takes place by a factor: (x)
 - $1/\sqrt{1+v^2/c^2}$
- (b) $1/\sqrt{1-v^2/c^2}$ (d) $\sqrt{1+v^2/c^2}$

 $(c) \qquad \sqrt{1 - v^2/c^2}$

(Theory)

2. Attempt any five of the following questions:

10

- (i)Define the term Entropy.
- Define the probability in term of frequency. (ii)
- (iii) Write the equation for maximum probability distribution in Bose-Einstein.
- (iv)What is Photon gas?
- (v)State Poynting vector.
- Write any two Maxwell's equations. (vi)
- (vii) Define frame of reference.
- Attempt any two of the following questions: 3.

10

- (*i*) Explain thermodynamic probability.
 - Write a note on Maxwell-Boltzmann statistics. (ii)
 - State and explain Ampere's law. (iii)
 - (iv)Write a note on length contraction.
- Attempt any *one* of the following questions:

10

- (i)Derive Maxwell's equations.
- (ii)Derive an expression for mass-energy relation.