This question paper contains 4 printed pages]

AO-112-2018

FACULTY OF SCIENCE

B.Sc. (Third Semester) EXAMINATION MARCH/APRIL, 2018

PHYSICS

Paper VI

(Waves, Oscillations and Acoustics)

(MCQ+Theory)

(Wednesday, 4-4-2018)				Time : 2.00 p	Time: 2.00 p.m. to 4.00 p.m			
Time—2 Hour	rs			Maxii	mum Marks—40			
N.B. :— (i)	Attempt	All questions.			S. A.			
(ii)	Q. No. 1	is MCQ type	, answer	MCQ questions	on OMR shee			
	only							

- Negative marking system is applicable for MCQs. (iii)
- (iv) Question Nos. 2, 3, 4 are descriptive type.
- (v) Symbols used in the question paper have their usual meanings.

(MCQ)

207 7	9000		0,0000000000000000000000000000000000000	5,0,0				
100	(i)	In stationary	wave every	node is se	eparated b	oy a distance	e of:	10
	12 02 02 02 02 02 02 02 02 02 02 02 02 02	(a) λ		(b)	2λ			
		(c) $\frac{\lambda}{2}$		(<i>d</i>)	$rac{\lambda}{4}$			
3000	(ii)	In case of sta	ationary wav	e rate of t	transfer of	f energy is :		

- - (a) not

(*b*) zero

maximum (c)

(d)non-zero

P.T.O.

- (iii) If $y = \left(2a\sin\frac{2\pi}{\lambda}x\right)\cos\frac{2\pi}{\lambda}Vt$ is the resultant displacement stationary wave, then amplitude of this wave is:
 - (a) 2a

- (b) $2a\cos\frac{2\pi}{\lambda}Vt$
- (c) $2a\sin\frac{2\pi}{\lambda}x$
- (d) $\sin \frac{2\pi}{\lambda} x$
- (iv) $\frac{d^2y}{dt^2} = V^2 \frac{d^2y}{dx^2}$ equation represents:
 - (a) differential equation of wave motion
 - (b) simple harmonic equation
 - (c) equation of straight line
 - (d) none of the above
- (v) $V_{max} = \frac{2\pi}{\lambda} aV$, this is the expression for :
 - (a) Maximum particle velocity
 - (b) Maximum wave acceleration
 - (c) Maximum wave velocity
 - (d) None of the above
- (vi) The maximum value of the amplitude when n = P (nearly) is:
 - (a) $A_m = \frac{1}{2kn}$
 - $(b) \qquad \mathbf{A}_m = \frac{1}{kn}$
 - $(c) \qquad A_m = \frac{1}{n^2 p^2}$
 - $(d) \qquad \mathbf{A}_m = \frac{\mathbf{F}}{2kn}$

- (vii) In FPS unit Sabine's formula for determination of reverberation time is:
 - $(a) t_1 = \frac{0.158 \text{ V}}{\Sigma A \alpha}$
- $(b) t = \frac{0.05 \text{ V}}{\text{A}\alpha}$

(c) $t = \frac{1.58}{A\alpha}$

- (d) $\frac{0.05}{A\alpha}$
- (viii) In conservative oscillatory motion of a particle, the sum of K.E. and P.E.:
 - (a) is zero

(b) is constant

(c) increases

- (d) decreases
- (ix) Magnetostriction generator generates:
 - (a) Stationary waves
- (b) Transverse waves
- (c) Ultrasonic waves
- (d) Longitudinal waves
- (x) Lowest wavelength of ultrasonic wave is:
 - (a) 31,100 cm

(b) 20,000 cm

(c) 10,000 cm

(d) 1.65 cm

(Theory)

2. Attempt any five of the following:

10

- (a) Define stationary wave.
- (b) Write down the equation of simple harmonic progressive wave.
- (c) What do you mean by forced vibrations?
- (d) Define absorption coefficient.
- (e) Define ultrasonics.
- (f) What are free vibrations?
- (g) Write Sabine's formula.
- 3. Attempt any *two* of the following:

10

(a) Derive the relation between wave velocity and particle velocity.

P.T.O.

- (b) Explain the phenomenon of resonance and sharpness of resonance.
- (c) Explain how velocity of sound in liquid is determined by acoustic grating.
- (d) Obtain an expression for distribution of energy per unit area in a stationary wave.
- 4. Attempt any one of the following

10

- (a) Obtain an expression for total energy of a plane progressive wave.
- (b) What is the piezo-electric effect? Explain piezo-electric generator for generation of ultrasonic waves.