This question paper contains 2 printed page]

X-65-2019

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) (Regular) EXAMINATION OCTOBER/NOVEMBER, 2019

(CBCS Pattern)

PHYSICS

Paper VI

(Waves, Oscillations and Acoustics)

(Friday, 29-11-2019)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt All questions.

- (ii) Illustrate your answers with suitably labelled diagrams, wherever necessary.
- 1. Explain analytical treatment of stationary waves formed in an open end organ pipe or string free at the other end.

Or

- (a) What are progressive waves? State the equation of simple harmonic progressive wave travelling along positive direction of x-axis. Using this equation, derive the differential equation of wave motion.
- (b) The equation of simple harmonic progressive wave is given as $y = 5\sin\frac{2\pi}{60} \ (34000t x)$

with lengths expressed in centimetre and time in second. Calculate

7

- (i) amplitude (ii) wavelength (iii) frequency (iv) wave velocity
- 2. What is damped vibrations? Derive differential equation for damped harmonic motion and obtain its general solution.

P.T.O.

WT (2) X-65-2019
Or

- (a) Explain piezo-electric oscillator for the production of ultrasonic waves.8
- (b) Explain the detection of ultrasonic using acoustic grating.

10

- 3. Attempt any *two* of following:
 - (a) State conditions for good acoustical designs of auditorium
 - (b) Investigate the pressure and density changes at displacement node and antinodes.
 - (c) Explain oscillatory motion of a particle from energy consideration
 - (d) Obtain relation between particle velocity and wave velocity.