This question paper contains 4 printed pages]

BF-39-2016

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

CHEMISTRY

Paper VIII

(Organic and Inorganic Chemistry)

(MCQ + Theory)

(Thursday, 13-10-2016)

Time—2 Hours

Time: 2.00 p.m. to 4.00 p.m.

 $Maximum\ Marks$ —10+30=40

- N.B. := (i) Attempt All questions.
 - (ii) All questions carry equal marks.
 - (iii) Use separate answer-sheet (OMR sheet) for MCQ No. 1.
 - (iv) Use black ball point pen to darken the circle of correct choice in OMR-sheet.
 - (v) Use only one answer-book for Sections A and B.

MCQ

- 1. Select the *correct* answer for each of the following Multiple Choice Questions:
 - - (a) Enantiomers

(b) Diastereoisomers

(c) Tautomers

- (d) Metamers
- (2) Which of the following conversions is an example of Ruff degradation?
 - (a) Glucose to Arabinose
- (b) Arabinose to Glucose
- (c) Glucose to Fructose
- (d) Fructose to Glucose

- (3) Lactic acid shows:
 - (a) Geometrical isomerism
- (b) Tautomerism
- (c) Optical isomerism
- (d) None of these

P.T.O.

WT				(2)			BF—3	39—20	016
	(4)		nonium cyanate	on	heatii	ng ui	ndergoes	rearrange	ment	to
		(a)	$\mathrm{H_2NCONH_2}$			(b)	$H_2N\cdot NF$	${ m H}_2$		
		(c)	$^{-}$ NH $_3$ and $^{-}$ CO $_2$			(d)	CH_3 — N	$^{ m H_2}$		
	(5)	Glucose contains								
		(a)	a ketonic group							
		(<i>b</i>)	an aldehyde gro	oup						
		(c)	a carboxylic aci	d gr	oup					
		(d)	a cyanide group)						
	(6)	Which of the following substituents lowers the basicity of aniline?								
		(a)	$-CH_3$			(b)	—OCH ₃	3		
		(c)	$-NH_2$			(d)	$-NO_2$			
	(7)	ROH	ROH + CO + BF ₃ $\xrightarrow{125^{\circ} - 180^{\circ}\text{C}}$ A; where A is :							
		(a)	ROR			(<i>b</i>)	RCOR			
		(c)	RCOOR			(d)	RCOOH	[
	(8)	Outermost electronic configuration of silver is								
		(a)	$3d^{10} 4s^1$			(<i>b</i>)	$5d^{10} 6s$	1		
		(c)	$4d^{10} 5s^1$			(d)	$3d^5 \ 4s^1$			
	(9)	In periodic table Lanthanide series elements are placed in								
		(a)	3rd group and	6th	period					
		(<i>b</i>)	3rd group and	3rd	period					
		(c)	3rd group and	2nd	period					
		(d)	3rd group and	5th	period					
	(10)	Actinide series elements have progressively filled subshell.								
		(a)	4f			(<i>b</i>)	5 <i>f</i>			
		(c)	6 <i>f</i>			(d)	None of	these		

Theory

Section A

(Organic Chemistry)

2.	Solve	any	two	of	the	following	:

- (a) Define the following terms:
 - (i) Asymmetric carbon atom
 - (ii) Optically active substance
 - (iii) Racemic mixture
 - (iv) Plane of symmetry
 - (v) Chain isomers.
- (b) How is glucose converted into fructose?
- (c) (1) How will you prepare aniline from:
 - (i) Chlorobenzene
 - (ii) Nitrobenzene
 - (iii) Phenol?
 - (2) What is the action of the following on diazomethane?
 - (i) Heat
 - (ii) Phenol.
- (d) How will you prepare selenium dioxide from metallic selenium? What is the action of ${\rm SeO}_2$ on :
 - (i) CH₃CHO
 - (ii) CH₃COCH₃
 - (iii) $C_6H_5CH_2OH$
 - (iv) CH₃COOH ?
- 3. Solve any two of the following:
 - (a) What is structural isomerism? Give cis and trans forms of:
 - (i) 2-butene
 - (ii) 1, 2-dibromoethene?

- (b) Explain Osazone formation of glucose with its mechanism.
- (c) How will you convert benzene into nitrobenzene? Explain the following reactions of nitrobenzene:
 - (i) Reduction in acidic medium
 - (ii) Reduction in neutral medium
 - (iii) Electrolytic reduction.
- (d) (i) What are monosaccharides? Give their classification with suitable example.
 - (ii) How will you prepare osmium tetraoxide from osmium metal? How will you bring about conversion of acraldehyde into glyceraldehyde using OsO₄?

Section B

(Inorganic Chemistry)

- 4. Answer any *two* of the following:
 - (a) Give the general characteristics of d block elements.
 - (b) Compare the atomic or ionic radii properties of second and third transition series elements with first transition series elements.
 - (c) Give any five applications of lanthanides.
 - (d) Calculate the magnetic moment of Ce^{+3} .