This question paper contains 5 printed pages]

R-48-2017

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2017

CHEMISTRY

Paper IX

(Physical and Inorganic Chemistry)

(Wednesday, 29-3	-201	7)
------------------	------	----

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (i) Attempt All questions.
 - (ii) All questions carry equal marks.
 - (iii) Use of logarithmic table and calculator is allowed.
 - (iv) Use separate answer sheet (OMR Sheet) for MCQ No. 1.
 - (v) Use black point pen to darken the circle of correct choice in OMR answer sheet.
 - (vi) Use only one answer book for both Sections A and B.

MCQ

- 1. Select the *correct* answer for each of the following multiple choice questions:
 - (1) The unit of rate constant for second order reaction is:
 - (a) Mole lit^{-1} time⁻¹
- (b) $Mole^{-1} lit^{-2} time^{-1}$
- (c) Mol^{-1} lit time⁻¹
- (d) Mol⁻² lit² time⁻¹

P.T.O.

- (2) For certain reaction rate expression takes the form rate = $K[A]\frac{5}{2} \cdot [B]\frac{1}{2}$. The order of reaction is:
 - (a) 3

 $(b) \qquad \frac{5}{2}$

(c) $\frac{3}{2}$

- (d) 4
- (3) Cell constant is equal to:
 - (a) $\frac{\text{length of conductor}}{\text{cross sectional area of conductor}}$
 - $\frac{\text{specific conductance}}{\text{observed conductance}}$
 - (c) Specific conductance × Resistance
 - (d) All of the above
- (4) With increase in dilution of electrolytic solution:
 - (a) Specific conductance decreases and equivalent conductance increases
 - (b) Specific conductance increases and equivalent conductance increases
 - (c) Specific conductance decreases and equivalent conductance decreases
 - (d) Specific conductance increases and equivalent conductance decreases
- (5) The transport number of an anion is given by expression, if V represents speed of an ion :

$$(a) t_a = \frac{V_c}{V_a - V_c}$$

$$(b) t_a = \frac{V_a}{V_a - V_c}$$

$$(c) t_a = \frac{V_a}{V_a + V_c}$$

$$(d) t_a = \frac{V_c}{V_a + V_c}$$

						9,72,7		C. A. B.
WT				(3)			R-48-	-2017
(6)	If Stark Einstein's law is strictly obeyed by the reactant molecules, then							
		the o	quantum yield of ph	otochem	ical re	action is:		
		(a)	greater than one		(<i>b</i>)	equal to one		
		(c)	less than one	A	(d)	equal to zer	0	
(8) (9)	"Only those light radiations which are absorbed by the reactant							
		molecules which are effective in producing chemical reaction." This is						
			statement of:		2 7 3 3 6			1000°
		(a)	Stark-Einstein's la	2220	otocher	nical equivale	ence	.60
		(b)	Grothus Draper's l	aw				
		(c)	Lambert-Beer's law	v Cook				
	(d)	Hittorf's law		938 N		A SOL		
	(8)	The basic unit of beryl is						
		(<i>a</i>)	$\mathrm{Si}_2\mathrm{O}_7^{-6}$		(<i>b</i>)	$Si_3O_9^{-6}$		
		(c)	$Si_6O_{18}^{-12}$		(d)	None of the	se	
	Which of the following does not form oxy acids of halogen?							
	T.	(a)	Fluorine		(<i>b</i>)	Chlorine		
		(c)	Bromine		(d)	Iodine		
	(10)	Hybridisation of Interhalogen compound IF_7 is						
		(a)	$ m dsp^2$	33777	(<i>b</i>)	dsp^3		
			$ m d^2sp^3$		(d)	${ m sp^3d^3}$		
				Theory				
999°			Se	ection A	A			
			(Physic	al Chei	mistry)		
2.	Solve	any t	two of the following	•			$2 \times$	5=10
	(i)	Deri	ve the equation for r	ate cons	stant of	first order re	eaction. Sta	ite its

P.T.O.

any two characteristics.

WT (4)	R-48-2017
----------	-----------

- (ii) (a) Define terms specific conductance and equivalent conductance. 2
 - (b) Write a note on Relaxation effect.

3

- (iii) Draw well labelled Joblanski diagram to explain photophysical pathways. Explain phosphorescence briefly.
- (iv) A solution of H₂O₂ when titrated against KMnO₄ solution at different time intervals gave the following results.

Time (min)	Vol. of KMnO ₄
	2,000,45,600,000,000,000,000,000,000,000,000,00
20	used for 10 ml H_4SO_4
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0	23.8 ml
20.00	
10	14.7 ml
.0,0,0,0	
20	9.1 ml

Show that the decomposition of H_2O_2 is a first order reaction.

3. Solve any *two* of the following:

 $2 \times 5 = 10$

- (i) (a) What is second order reaction? Show that for second order reaction $t_{1/2}$ is inversely proportional to initial concentration of reactant.
 - (b) In a photochemical reaction 5×10^{20} molecules were decomposed by absorbing 0.5×10^{19} quantas of radiation. Calculate quantum yield of photochemical reaction.
- (ii) State Kohlrausch law of migration of independent ions. Explain its any two applications.
- (iii) The resistance of N/20 solution of NaCl was found to be 400 ohms. Calculate equivalent conductance of NaCl solution when two platinum electrodes dipping in it are 1.5 cm apart having cross-sectional area 3.0 cm².
- (iv) State Stark-Einstein's law of photochemical equivalence. Give reasons for low and high quantum yield of photochemical reactions.

Section B

(Inorganic Chemistry)

4. Answer any two of the following:

 $2 \times 5 = 10$

- (i) What are Zeolites? Gives their classification.
- (ii) Give preparation, properties and uses of cyanogen.
- (iii) What are oxy acids of halogen? Explain the strength and stability of oxy acids of halogen.
- (iv) Give the preparation, structure and uses of dichlorine heptoxide $(\operatorname{Cl}_2\operatorname{O}_7)$.