This question paper contains **4+2** printed pages]

BF-63-2016

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(Revised Course)

MATHEMATICS

Paper IX

(Real Analysis—II)

(MCQ + Theory)

(Tuesday, 18-10-2016)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) First 30 minutes are for Q. No. 1 (MCQ) and remaining time for other questions.
- (iii) Figures to the right indicate full marks.
- (iv) Use black ball point pen to darken the circle of correct choice in OMR answer-sheet.
- (v) Negative marking system is applicable for MCQ.

MCQ

- 1. Choose the correct alternative for each of the following: 1 each
 - $\int_{\underline{a}}^{b} f dx = \dots$
 - (a) $\inf\{U(p, f) : p \text{ is a partition of } [a, b]\}$
 - (b) $\sup\{L(p, f) : p \text{ is a partition of } [a, b]\}$
 - (c) $\inf\{L(p, f) : p \text{ is a partition of } [a, b]\}$
 - (d) sup{U(p, f) : p is a partition of [a, b]}

- (2) If p^* is a refinement of p of [a, b], then for a bounded function f
 - (a) $L(p^*, f) \ge L(p, f)$
- (b) $L(p^*, f) \leq L(p, f)$
- (c) $L(p, f) \ge L(p^*, f)$
- (d) $L(p, f) \le L(p^*, f)$
- (3) If f_1 and f_2 are integrable, then which of the following statements is correct ?
 - (a) $f_1 \pm f_2$ is integrable on [a, b]
 - (b) $f_1 f_2$ is integrable on [a, b]
 - (c) |f| is integrable on [a, b]
 - (d) All of the above
- (4) If a function f is bounded and integrable on each of the intervals [a, c], [c, b], [a, b], where c is a point of [a, b] then $\int_{a}^{b} f dx = \dots$
 - (a) $\int_{a}^{b} f dx + \int_{a}^{b} f dx$

 $(b) \qquad \int_{b}^{a} f dx + \int_{a}^{c} f dx$

- $(c) \qquad \int_{a}^{c} f dx + \int_{c}^{b} f dx$
- $(d) \qquad \int_{a}^{b} f dx + \int_{b}^{c} f dx$
- (5) A function f is bounded and integrable on [a, b] and there exists a function F such that F' = f on [a, b], then $\int_{a}^{b} f dx = \dots$
 - (a) F(b) F(a)

(b) f(b) - f(a)

(c) F(a) - F(b)

(d) f(a) - f(b)

$$(6) \qquad \int_0^1 \frac{1}{\sqrt{x}} dx = \dots$$

(*a*) 0

(*b*) 1

(c) 2

- (d) 3
- (7) The improper integral $\int_a^b f dx$ is said to be convergent at b, if:
 - (a) for every λ , $0 < \mu < b a$, $\int_a^{b-\mu} f dx$ exists

$$(b) \qquad \int_a^b f dx = \lim_{\mu \to 0^+} \int_a^{b-\mu} f dx$$

- (c) $\lim_{\mu \to 0^+} \int_a^{b-\mu} f dx$ exists and finite
- (d) All of the above
- (8) A series of the form

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

is called:

- (a) Trigonometric series
- (b) Taylor's series
- (c) Maclaurin's series
- (d) Power series
- (9) A period function of bounded variation can be expressed as a
 - (a) Trigonometric series
- (b) Fourier series
- (c) Taylor's series
- (d) Power series

- If f is an odd function, then a_n =
 - (a) $\frac{1}{\pi} \int_{0}^{\pi} f \cos nx \, dx$ (b) $\frac{1}{\pi} \int_{\pi}^{0} f \cos nx \, dx$
 - (c) $\frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nx \, dx$ (d) $\int_{-\pi}^{\pi} f \cos nx \, dx$
- 2. Attempt any two of the following:

5 each

(*a*) Prove that a function f is integrable over [a, b] iff there is a number I lying between L(p, f) and U(p, f) such that for any $\in > 0$, there exists a partition p of [a, b] such that :

$$|U(p, f) - I| < \epsilon \text{ and } |I - L(p, f)| < \epsilon.$$

(*b*) If f is bounded and integrable on [a, b], then prove that |f| is also bounded and integrable on [a, b]. Moreover:

$$\left| \int_{a}^{b} f dx \right| \leq \int_{a}^{b} |f| \ dx.$$

(c) Show that the function *f* defined by :

$$f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$$

is not integrable on any interval.

3. Attempt any two of the following:

5 each

(a) If a function f is continuous on [a, b], then prove that there exists a number ξ in [a, b] such that :

$$\int_{a}^{b} f dx = f(\xi) (b - a).$$

(b) If f and g be two positive functions in [a, b] such that :

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = l,$$

where l is a non-zero finite number, then prove that the two integrals

$$\int_{a}^{b} f dx \text{ and } \int_{a}^{b} g dx$$

converge and diverge together at a.

(c) Test the convergence of:

$$\int_{0}^{\pi/2} \frac{\sin x}{x^p} dx.$$

4. Attempt any two of the following:

5 each

(a) If f is bounded and integrable on $[-\pi, \pi]$ and if a_n , b_n are its Fourier coefficients, then prove that :

$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

converges.

(b) If f is bounded and integrable in $[-\pi, \pi]$ and monotonic in $[-\delta, 0[$ and] $[0, \delta]$, where $0 < \delta < \pi$, then prove that :

$$\frac{1}{2}a_0 = \sum_{n=1}^{\infty} a_n = \frac{f(0-) + f(0+)}{\pi} \int_{0}^{\infty} \frac{\sin x}{x} dx$$

where a_n , n = 0, 1, 2, denote the Fourier's coefficients of f.

(c) Expand in a series of sines and cosines of multiple angles of x, the periodic function f with period 2π defined as

$$f(x) = \begin{cases} -1, & \text{for } -\pi < x < 0 \\ 1, & \text{for } 0 \le x \le \pi \end{cases}$$

Also calculate the sum of the series at $x = 0, \frac{\pi}{2}, \pm \pi$.