This question paper contains 3 printed pages]

BF-78-2016

FACULTY OF ARTS/SCIENCES

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION OCTOBER/NOVEMBER, 2016

(Revised Course)

MATHEMATICS

Paper X

(Ring Theory)

(MCQ + Theory)

(Thursday, 20-10-2016)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) First **30** minutes for Q. No. **1** and remaining time for other questions.
- (iii) Figures to the right indicate full marks.
- (iv) Use black ball point pen to darken the circle on OMR sheet for Q. No. 1.
- (v) Negative marking system is applicable for Q. No. 1 (MCQ).

MCQ

- 1. Choose the *correct* alternative for each of the following:
 - (i) If R is the set of rational numbers under the usual addition and multiplication of rational numbers, then:
 - (A) R is a commutative ring
 - (B) R has a unit element
 - (C) R is a field
 - (D) All of these are correct
 - (ii) A commutative ring is an integral domain if:
 - (A) It has zero divisors (B) It has no zero divisors
 - (C) It has a unit element (D) None of these

10

		(2) BF—78—2016
(iii)		R and R' be two arbitray rings and define $\phi: R \to R'$ as
	$\phi(a)$	$= 0 \text{ for all } a \in \mathbb{R}, \text{ then } :$
	(\mathbf{A})	φ is not a homomorphism
	(B)	$\mathbf{I}(\phi) = 0$
	(C)	ϕ is a homomorphism with $I(\phi) = R$
	(D)	ϕ is a homomorphism with $I(\phi) = 0$
(iv)	If U	is an ideal of R and $1 \in U$, then :
	(\mathbf{A})	$\mathbf{U} = 0 \tag{B} \mathbf{U} = \mathbf{R}$
	(C)	$U \neq R$ (D) All of these
(v)		leal $M \neq R$ in a ring R is said to be a maximal ideal of R if whenever an ideal of R such that $M \subset U \subset R$, then :
	(A)	$R \neq U$ (B) $M \neq U$
	(C)	R = U and $M = U$ (D) $R = U$ or $M = U$
(vi)	In th	e Euclidean ring R, a and b in R are said to be relatively prime
	(A)	their greatest common divisor is a unit of R
	(B)	a divides b
	(C)	b divides a
	(D)	their least common multiple is zero
(vii)	If $p(x)$	$q(x) = 1 + x - x^2$ and $q(x) = 2 + x^2 + x^3$, then $p(x) \cdot q(x) = x^2 + x^3$
	(A)	$2 + 2x + x^2 + 2x^3 + x^5$
	(B)	$3 + x + x^3$
	(C)	$2 + 2x - x^2 + 2x^3 - x^5$
	(D)	None of these
(viii)	A pol	ynomial $p(x)$ in $f(x)$ is said to be irreducible over F if whenever
	p(x) =	= $a(x)$. $b(x)$ with $a(x)$, $b(x) \in F(x)$, then:
	(A)	both $a(x)$, $b(x)$ must have degree 0
	(B)	one of $a(x)$ or $b(x)$ has degree 0
	(C)	neither $a(x)$ nor $b(x)$ has degree 0
	(D)	both $a(x)$, $b(x)$ has degree 1
(ix)	If $f(x)$), $g(x)$ are non-zero elements in $F(x)$, then:
	(A)	$\deg f(x) \ge \deg f(x)$. $g(x)$
	(B)	$\deg f(x) \le \deg g(x)$
	(C)	$\deg f(x) \le \deg f(x)$. $g(x)$

(D)

 $\deg f(x) = \deg f(x) + \deg g(x)$

WT (3) BF—78—2016

- (x) If $a \neq 0$, $b \neq 0$ are in R and $a \mid b$, $b \mid c$, then:
 - (A) $a \mid c$

(B) $c \mid a$

(C) a = c

(D) a = bc

Theory

2. Attempt any *two* of the following:

5 each

- (a) If R is a ring, then for all $a, b \in R$, prove that:
 - (*i*) a.0 = 0.a = 0
 - (*ii*) a(-b) = (-a)b = -(ab)
- (b) If ϕ is a homomorphism of R in R', then prove that :
 - $(i) \qquad \phi (0) = 0$
 - (ii) $\phi(-a) = -\phi(a)$ for every $a \in \mathbb{R}$
- (c) If $R = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}}$ is the set of integers mod 7 under the addition and multiplipication mod 7, then find :
 - (i) $\overline{2} + \overline{3}$
 - (ii) $\overline{4} + \overline{5}$
 - (*iii*) $\overline{0} + \overline{6}$
 - (iv) $\overline{2} \cdot \overline{5}$
 - (v) $\overline{4} \cdot \overline{3}$
- 3. Attempt any *two* of the following:

5 each

- (a) If U is an ideal of R, then prove that R/U is a ring.
- (b) Prove that a Euclidean ring possesses a unit element.
- (c) If U, V are ideals of R, let $U + V = \{u + v \mid u \in U, v \in V\}$, then prove that U + V is also an ideal.
- 4. Attempt any *two* of the following:

5 each

- (a) If p is a prime number of the form 4n + 1, then prove that we can solve the congruence $x^2 \equiv -1 \pmod{p}$.
- (b) If f(x), g(x) are two non-zero elements of F(x), then prove that : deg $(f(x), g(x)) = \deg f(x) + \deg g(x)$.
- (c) Prove that $x^2 + 1$ is irreducible over the integers mod 7.