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MCQ

1. Choose the correct alternative for each of the following : 10

@) If R is the set of rational numbers under the usual addition and
multiplication of rational numbers, then :

(A)
(B)
(©)
(D)

R is a commutative ring
R has a unit element

R is a field

All of these are correct

(1) A commutative ring is an integral domain if :

(A)
(®))

It has zero divisors (B) It has no zero divisors

It has a unit element (D) None of these
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Let R and R' be two arbitray rings and define ¢ : R > R' as
0 (@) = 0 for all @ € R, then :

(A) ¢ is not a homomorphism
B) I¢p) =0
(C) ¢ is a homomorphism with I(¢) = R

(D) ¢ is a homomorphism with I(¢p) = 0

If U is an ideal of R and 1€ U, then :

A U=0 (B) U=R

(C) U=#R (D) All of these

An ideal M # R in a ring R is said to be a maximal ideal of R if whenever
U is an ideal of R such that McUcR, then :

(A) R=#U (B) M=+U

(C) R=Uand M =10 (D) R=UorM=1U

In the Euclidean ring R, a and b in R are said to be relatively prime,
if :

(A) their greatest common divisor is a unit of R

(B) a divides b

(C) b divides a

(D)  their least common multiple is zero

If px) = 1 + x — 22 and q(x) = 2 + x2 + x3, then p(x) - g(x) =
(A 2+ 2x + x2 + 223 + 20

B) 3+ x+ a8

(C) 2+ 2% — x2 + 243 — x5

(D) None of these

A polynomial p(x) in flx) is said to be irreducible over F if whenever
p(x) = alx). b(x) with a(x), b(x) € F(x), then :

(A)  both a(x), b(x) must have degree 0

(B) one of a(x) or b(x) has degree 0

(C) neither a(x) nor b(x) has degree 0

(D)  both a(x), b(x) has degree 1

If Alx), g(x) are non-zero elements in F(x), then :
(A) deg flx) > deg fix). g(x)

(B) deg filx) < deg g(x)

(C) deg filx) < deg flx). gx)

(D) deg flx) = deg fix) + deg g(x)
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(x) Ifa #0, 5 #0 are in R and alb, blec, then :
(A alec (B) cla
C) a=c D) a = be
Theory
Attempt any two of the following : 5 each
(@) If R is a ring, then for all a¢, b € R,

prove that :
@) a.0 =0a =0
(@)  a(=b) = (-a)b = — (ab)
(b) If ¢ is a homomorphism of R in R', then prove that :
@) ¢ (0) =0
i) ¢ (-a) = — o(a) for every a € R

(c) If R={0,1,2,3,4,5,6} is the set of integers mod 7 under the addition

(@) 2+3

@)  4+5

@) 0+6

) 2-5
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Attempt any two of the following : 5 each
(@) If U is an ideal of R, then prove that R/U is a ring.
(b) Prove that a Euclidean ring posseses a unit element.

(c) If U, V are ideals of R, let U + V={u + vl u € U, v € V}, then prove
that U + V is also an ideal.

Attempt any two of the following : 5 each
(@) If p is a prime number of the form 4n + 1, then prove that we can
solve the congruence x2 = — 1 (mod p).

b) If flx), g(x) are two non-zero elements of F(x), then prove that :

deg (flx). gx)) = deg flx) + deg g(x).
(c) Prove that x2 + 1 is irreducible over the integers mod 7.
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