This question paper contains 5 printed pages]

R-66-2017

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2017

(Revised Course)

MATHEMATICS

Paper IX

(Real Analysis—II)

(MCQ+Theory)

(Friday, 31-3-2017)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) All questions are compulsory.

- (ii) First 30 minutes are for Question No. 1 (MCQ) and remaining time for other questions.
- (iii) Figures to the right indicate full marks.
- (iv) Use black ball point pen to darken the circle of correct choice in OMR answer-sheet.
- (v) Negative marking system is applicable for MCQs.

(MCQs)

- 1. Choose the *correct* alternative for each of the following: 1 each
 - (i) If f is bounded and integrable on [a, b], then there exists a number λ lying between the bounds of f such that :

 $\int_{a}^{b} f \, dx$ is equal to:

(a) b-a

(b) a-b

(c) $\lambda(b-a)$

(d) $\lambda(a-b)$

P.T.O.

- If f is a bounded function on [a, b], then to every \in > 0, there corresponds (ii) $\delta > 0$ such that :
 - (a) $U(P, f) > \int_{a}^{-b} f \, dx + \epsilon$ (b) $U(P, f) < \int_{a}^{-b} f \, dx + \epsilon$ (c) $L(P, f) < \int_{-a}^{b} f \, dx \epsilon$ (d) $L(P, f) < \int_{-a}^{b} f \, dx + \epsilon$
- If f is Riemann integrable on [a, b], then: (iii)
 - (a) $\left| \int_{a}^{b} f \ dx \right| \leq \int_{a}^{b} |f| \ dx$
 - (b) $\left| \int_{a}^{b} f \ dx \right| \ge \int_{a}^{b} |f| \ dx$
 - (c) $\left| \int_{a}^{b} f \ dx \right| = \int_{a}^{b} |f| \ dx$
 - (d) None of the above
- (iv) $\int f dx$, where f = 3x + 1, is equal to :

(c)

- Let f is a non-negative continuous function on [a, b] and $\int f(x)dx = 0$, (v)

then f(x) is equal to :

(a)1 (b) 0

(c)

(d)<u>+</u>1

- (vi)If a function f is continuous on [a, b], then there exists a number ξ in [a, b] such that $\int_{a}^{b} f dx$ is equal to:
 - (a)

- $f(\xi)(b-a)$ (c)
- $(d) \qquad f(\xi) (a-b)$
- The improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$ conveges if and only if : (vii)
 - n < 1(a)

 $\begin{array}{cc} (b) & n > 1 \\ (d) & n \le 1 \end{array}$

(c) $n \geq 1$

- For a periodic function of period 2π , then $\int_{-\infty}^{\infty} f \ dx$ is equal to : (viii)
 - (a) $\int_{\alpha}^{2\pi} f \ dx$

 $(b) \int_{\alpha}^{\pi} f \ dx$

(c) $\int_{0}^{\alpha+\pi} f \ dx$

- $(d) \int_{-\infty}^{\alpha+2\pi} f \ dx$
- (ix)If a function f is bounded and integrable in [0, a], a > 0, and monotone in $]0, \delta], 0 < \delta < a$, then $\lim_{n \to \infty} \int_{0}^{a} f \frac{\sin nx}{x} dx$ is equal to :

 - (a) $f(0^-)$ $\int_0^\infty \frac{\sin x}{x} dx$ (b) $f(0^+)$ $\int_0^\infty \frac{\sin x}{x} dx$
 - (c) $f(0) \int_{-x}^{0} \frac{\sin x}{x} dx$
- $(d) \qquad f(0^+) \int\limits_{-\infty}^{\infty} \frac{\sin x}{x} dx$

P.T.O.

- If f is an even function then a_n is equal to : (x)

 - (a) $\frac{1}{\pi} \int_{0}^{\pi} f \cos nx \, dx$ (b) $\frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nx \, dx$
 - (c) $\frac{2}{\pi} \int_{-\pi}^{\pi} f \cos nx \, dx$ (d) $\frac{2}{\pi} \int_{0}^{\pi} f \cos nx \, dx$

(Theory)

2.Attempt any two of the following: 5 each

For any two partitions P₁, P₂ prove that (a)

$$L(P_1, f) \le U(P_2, f)$$
.

- (b) Prove that the oscillation of a bounded function f on an interval [a, b] is the supremum of the set $\{f(x_1) - f(x_2) | : x_1, x_2 \in [a, b]\}$ of numbers.
- Show that x^2 is integrable on any interval [0, k]. (c)
- 3. Attempt any two of the following:

5 each

If a function f is bounded and integrable on [a, b], then prove that (a) the function F defined as:

$$F(x) = \int_{a}^{x} f(t) dt, \ a \le x \le b$$

is continuous on [a, b].

(b) If f and g are integrable on [a, b] and g keeps the same sign over [a, b], then prove that there exists a number μ lying between the bounds of f such that :

$$\int_{a}^{b} fg \ dx = \mu \int_{a}^{b} g \ dx.$$

(c) Examine the convergence of:

$$\int_0^2 \frac{dx}{(2x-x^2)}.$$

4. Attempt any *two* of the following:

5 each

(a) If f is bounded and integrable in $[-\pi, \pi]$ and monotonic in $[-\delta, 0[$ and $]0, \delta]$, where $0 < \delta < \pi$, then :

$$\frac{1}{2}a_0 = \sum_{n=1}^{\infty} a_n = \frac{f(0-) + f(0+)}{\pi} \int_{0}^{\infty} \frac{\sin x}{x} dx$$

where a_n , $n = 0, 1, 2, \dots$ denote the Fourier's coefficients of f.

(b) For a periodic function of period 2π , prove that :

$$\int_{\alpha}^{\beta} f \ dx = \int_{\alpha+2\pi}^{\beta+2\pi} f \ dx$$

 α , β , γ being any numbers whatsoever.

(c) Find the Fourier series of the periodic function f with period 2π , defined as:

$$f(x) = \begin{cases} 0, & \text{for } -\pi < x \le 0 \\ x, & \text{for } 0 \le x \le \pi \end{cases}$$

What is the sum of the series at x = 0?