This question paper contains 4 printed pages]

R-79-2017

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2017

(Revised Course)

MATHEMATICS

Paper X

(Ring Theory)

(MCQ+Theory)

(Monday, 3-4-2017)

Time : 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) First 30 minutes for Question No. 1 and remaining time for other questions.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use black ball point pen to darken the circle on OMR-sheet for Q. No. 1.
 - (v) Negative marking system is applicable for Q. No. 1 (MCQs).

.. Choose the *correct* alternative for each of the following:

1 each

- (i) R is the set of integers, positive, negative and 0; + is usual addition and '.' the usual multiplication of integers, then:
 - (a) R is a commutative ring
 - (b) R is a commutative ring with unit element
 - (c) R is a commutative ring but has no unit element
 - (d) None of the above

P.T.O.

- - (a) ma = 0 for all $a \in D$
 - (b) $ma \neq 0$ for all $a \in D$
 - (c) $m \neq 0$
 - $(d) \quad a = 0$
- (iii) Let R be a ring, R' = R and define $\phi(x) = x$ for every $x \in \mathbb{R}$, then:
 - (a) ϕ is not a homomorphism
 - (b) $I(\phi) = R$
 - (c) ϕ is a homomorphism and $I(\phi) = R$
 - (d) ϕ is a homomorphism and $I(\phi)$ consists only of 0
- (iv) A non-empty subset U of R is said to be a ideal of R if:
 - (a) U is a subgroup of R under addition
 - (b) For every $u \in U$ and $r \in \mathbb{R}$, both ur and ru are in U
 - (c) Both (a) and (b)
 - (d) None of the above
- (v) Which of the following is/are true?
 - (a) If a/b and b/c then a/c
 - (b) If a/b and a/c then $a/(b \pm c)$
 - (c) If a/b and a/bx for all $x \in \mathbb{R}$
 - (d) All of the above
- (vi) Let R be a commutative ring with unit element. Two elements a and b in R are said to be associates if :
 - (a) b = ua for any u in R
 - (b) b = ua for some unit u in R
 - (c) $b \neq ua$ for u in R
 - (d) b = a

- (*vii*) The polynomial $x^2 + 1$ is
 - (a) reducible over the real field
 - (b) irreducible over the complex field
 - (c) irreducible over the complex field but not over the real field
 - (d) irreducible over the real field but not over the complex field
- - (a) the greatest common divisor of the integers a_0 , a_1 , a_2 ,, a_n
 - (b) the greatest common divisor of the integers a_1 , a_2 , a_n
 - (c) the greatest common divisor of the integers a_2 , a_3 , a_n
 - (d) the greatest common divisor of the integers a_3 , a_4 ,, a_n
- (ix) Which of the following is/are true?
 - (a) F[x] is an integral domain
 - (b) F[x] is an Euclidean ring
 - (c) F[x] is a principal ideal ring
 - (d) All of the above
- (x) If $p(x) = 1 + x x^2$ and $q(x) = 2 + x^2 + x^3$, then $p(x) \cdot q(x) = \dots$
 - (a) $2 + x^4 + 3x^5$
- (b) $2 + 2x x^2 + 2x^3 x^5$
- (c) $2 + 3x^3 4x^5$
- $(d) \qquad 2 + x^5 + x^4 + x^3 + 7x^2$

(Theory)

2. Attempt any two of the following:

5 each

- (a) If ϕ is a homomorphism of R into R' with kernel I(ϕ), then prove that:
 - (i) $I(\phi)$ is a subgroup of R under addition.
 - (ii) If $a \in I$ (ϕ) and $r \in R$ then both ar and ra are in $I(\phi)$.
- (b) If R is a ring, then for all $a, b \in R$ prove that :
 - (i) a(-b) = (-a)b = -(ab)
 - $(ii) \quad (-a)(-b) = ab.$

P.T.O.

- (c) If $R = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is the set of integers mod 6 under addition and multiplication then find :
 - (i) $\overline{3} + \overline{4}$
 - (ii) $\overline{2} + \overline{5}$
 - (iii) $\overline{1} + \overline{5}$
 - (iv) $\overline{2}$ $\overline{4}$
 - (v) $\overline{3}$ $\overline{5}$
- 3. Attempt any two of the following:

5 each

- (a) Let R be a Euclidean ring and let A be an ideal of R. Then prove that there eixsts an element $a_0 \in A$ such that A consists exactly of all a_0x as x ranges over R.
- (b) Let R be an integral domain with unit element and supose that for $a, b \in R$ both a/b and b/a are true. Then prove that a = ub, where u is a unit in R.
- (c) Prove that if [a, b] = [a', b'] and [c, d] = [c', d'] then prove that : [a, b] [c, d] = [a', b'] [c', d'].
- 4. Attempt any two of the following:

5 each

- (a) If f(x) and g(x) are primitive polynomials, then prove that f(x) g(x) is a primitive polynomial.
- (b) Prove that if R is an integral domain, then so is R[x]
- (c) Prove that $x^2 + x + 1$ is irreducible over F, the field of integers mod 2.