This question paper contains 4 printed pages]

R-92-2017

FACULTY OF SCIENCE

B.Sc. (Second Year) (Fourth Semester) EXAMINATION MARCH/APRIL, 2017

MATHEMATICS -

Paper XI

(Partial Differential Equations)

(MCQ & Theory)

		(MCQ & III	eory		
(Thursday, 6-4-2017) Time—2 Hours			Time: 2.00 p.m. to 4.00 p.m. Maximum Marks—40		
					N.B. :
	(ii)	Use only black point pen for	first (question.	
(iii)		Darken only <i>one</i> circle for most correct answer of each MCQ.			
1	(iv)	Negative marking system is	appli	cable for first question.	
	8 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MCQ			
1. Cho	ose th	ne most correct answer of the	follow	ing (attempt all): 1 each	
(i)	Pa	rtial differential coefficient	5' 	is denoted by 't'.	
	(a)	$\frac{\partial^2 z}{\partial x \partial y}$	(<i>b</i>)	$\frac{\partial^2 z}{\partial x^2}$	
	(c)	$\frac{\partial^2 z}{\partial y^2}$	(d)	$\frac{\partial z}{\partial x}$	
(ii)	Pai	Partial differential equation is formed by eliminating arbitrary			
	(a)	Constants	(b)	Variables	
	(c)	Constants or variables	(d)	None of these	

- - (a) Greater than

(b) Same

(c) Less than

- (d) None of these
- (iv) With usual notations the form of Lagrange's linear partial differential equation is
 - $(a) \qquad \mathbf{P}_p \,+\, \mathbf{Q}_q \,<\, \mathbf{R}$

 $(b) \qquad \mathbf{P}_p + \mathbf{Q}_q = \mathbf{R}$

- (c) $P_p + Q_q > R$
- (d) None of these
- (v) An equation of the type

$$a_0 \frac{\partial^n z}{\partial x^n} + a_1 \frac{\partial^n z}{\partial x^{n-1} \partial y} + \dots + a_n \frac{\partial^n z}{\partial y^n} = F(x, y)$$

is called

- (a) Homogeneous linear partial differential equation
- (b) nth order partial differential equation
- (c) Partial differential equation with constant coefficients
- (d) All of the above
- (vi) The auxiliary equation of:

$$\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial x \partial y} + 4 \frac{\partial^2 z}{\partial y^2} = 0$$

is

- $(a) \quad m^2 4m + 4 = 0$
- $(b) \qquad m^2 + 4 = 0$

 $(c) \qquad m - 4 = 0$

- $(d) \qquad m^2 + 4m 4 = 0$
- (vii) With usual notations the equations

$$Rdpdy + Tdqdx - Vdxdy = 0$$

and

$$Rdv^2 - Sdxdy + Tdx^2 = 0$$

are called equations.

(a) Lagrange's

(b) Charpit's

(c) Monge's

(d) None of these

(viii) The partial differential equations:

$$-\frac{\partial \mathbf{V}}{\partial x} = \mathbf{L} \frac{\partial \mathbf{I}}{\partial t}, -\frac{\partial \mathbf{I}}{\partial x} = \mathbf{C} \frac{\partial \mathbf{V}}{\partial t}$$

are called equations.

(a) Radio

(b) Wave

(c) Laplace

- (d) None of these
- (ix) Which of the following is Laplace equation in two dimensions?

(a)
$$\frac{\partial u}{\partial v} = a^2 \frac{\partial^2 u}{\partial x^2}$$

(b) $\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = a$

(c)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial t^2}$$

- (d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- (x) The solution of wave equation is obtained using method.
 - (a) Charpit's

(b) D'Almbert's

(c) Lagrange's

(d) None of these

Theory

2. Attempt any two of the following:

5 each

(a) Form a partial differential equation from:

$$x^2 + y^2 + (z - c)^2 = a^2$$
.

(b) Solve:

$$\frac{\partial^2 z}{\partial x^2 \partial y} = \cos(2x + 3y).$$

(c) Solve the following PDE:

$$yq - xp = z$$

where
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

P.T.O.

3. Attempt any *two* of the following :

5 each

- (a) Explain the rule for finding the complementary function of the linear homogeneous PDE of *n*th order with constant coefficients.
- (b) Solve:

$$p^2 + q^2 = 1$$

where
$$p = \frac{\partial z}{\partial x}$$
 and $q = \frac{\partial z}{\partial y}$.

(c) Find the general integral of the equation:

$$\frac{\partial^2 z}{\partial x^2} + 3\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = x + y.$$

4. Attempt any two of the following:

5 each

(a) Solve the wave equation:

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

by D'Almbert's method.

(b) Obtain the solution of the wave equation:

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

using method of separation of variables.

(c) Find the solution of:

$$\frac{\partial^2 u}{\partial x^2} = h^2 \frac{\partial y}{\partial t}$$

for which u(0, t) = 0, = u(l, t), $u(x, 0) = \sin \frac{\pi x}{l}$ by method of variables separable.

R-92-2017